![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > elriin | GIF version |
Description: Elementhood in a relative intersection. (Contributed by Mario Carneiro, 30-Dec-2016.) |
Ref | Expression |
---|---|
elriin | ⊢ (𝐵 ∈ (𝐴 ∩ ∩ 𝑥 ∈ 𝑋 𝑆) ↔ (𝐵 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝑋 𝐵 ∈ 𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elin 3225 | . 2 ⊢ (𝐵 ∈ (𝐴 ∩ ∩ 𝑥 ∈ 𝑋 𝑆) ↔ (𝐵 ∈ 𝐴 ∧ 𝐵 ∈ ∩ 𝑥 ∈ 𝑋 𝑆)) | |
2 | eliin 3784 | . . 3 ⊢ (𝐵 ∈ 𝐴 → (𝐵 ∈ ∩ 𝑥 ∈ 𝑋 𝑆 ↔ ∀𝑥 ∈ 𝑋 𝐵 ∈ 𝑆)) | |
3 | 2 | pm5.32i 447 | . 2 ⊢ ((𝐵 ∈ 𝐴 ∧ 𝐵 ∈ ∩ 𝑥 ∈ 𝑋 𝑆) ↔ (𝐵 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝑋 𝐵 ∈ 𝑆)) |
4 | 1, 3 | bitri 183 | 1 ⊢ (𝐵 ∈ (𝐴 ∩ ∩ 𝑥 ∈ 𝑋 𝑆) ↔ (𝐵 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝑋 𝐵 ∈ 𝑆)) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 ↔ wb 104 ∈ wcel 1463 ∀wral 2390 ∩ cin 3036 ∩ ciin 3780 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 681 ax-5 1406 ax-7 1407 ax-gen 1408 ax-ie1 1452 ax-ie2 1453 ax-8 1465 ax-10 1466 ax-11 1467 ax-i12 1468 ax-bndl 1469 ax-4 1470 ax-17 1489 ax-i9 1493 ax-ial 1497 ax-i5r 1498 ax-ext 2097 |
This theorem depends on definitions: df-bi 116 df-tru 1317 df-nf 1420 df-sb 1719 df-clab 2102 df-cleq 2108 df-clel 2111 df-nfc 2244 df-ral 2395 df-v 2659 df-in 3043 df-iin 3782 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |