ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elriin GIF version

Theorem elriin 3987
Description: Elementhood in a relative intersection. (Contributed by Mario Carneiro, 30-Dec-2016.)
Assertion
Ref Expression
elriin (𝐵 ∈ (𝐴 𝑥𝑋 𝑆) ↔ (𝐵𝐴 ∧ ∀𝑥𝑋 𝐵𝑆))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑋   𝑥,𝐵
Allowed substitution hint:   𝑆(𝑥)

Proof of Theorem elriin
StepHypRef Expression
1 elin 3346 . 2 (𝐵 ∈ (𝐴 𝑥𝑋 𝑆) ↔ (𝐵𝐴𝐵 𝑥𝑋 𝑆))
2 eliin 3921 . . 3 (𝐵𝐴 → (𝐵 𝑥𝑋 𝑆 ↔ ∀𝑥𝑋 𝐵𝑆))
32pm5.32i 454 . 2 ((𝐵𝐴𝐵 𝑥𝑋 𝑆) ↔ (𝐵𝐴 ∧ ∀𝑥𝑋 𝐵𝑆))
41, 3bitri 184 1 (𝐵 ∈ (𝐴 𝑥𝑋 𝑆) ↔ (𝐵𝐴 ∧ ∀𝑥𝑋 𝐵𝑆))
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105  wcel 2167  wral 2475  cin 3156   ciin 3917
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-v 2765  df-in 3163  df-iin 3919
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator