| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > elriin | GIF version | ||
| Description: Elementhood in a relative intersection. (Contributed by Mario Carneiro, 30-Dec-2016.) | 
| Ref | Expression | 
|---|---|
| elriin | ⊢ (𝐵 ∈ (𝐴 ∩ ∩ 𝑥 ∈ 𝑋 𝑆) ↔ (𝐵 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝑋 𝐵 ∈ 𝑆)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | elin 3346 | . 2 ⊢ (𝐵 ∈ (𝐴 ∩ ∩ 𝑥 ∈ 𝑋 𝑆) ↔ (𝐵 ∈ 𝐴 ∧ 𝐵 ∈ ∩ 𝑥 ∈ 𝑋 𝑆)) | |
| 2 | eliin 3921 | . . 3 ⊢ (𝐵 ∈ 𝐴 → (𝐵 ∈ ∩ 𝑥 ∈ 𝑋 𝑆 ↔ ∀𝑥 ∈ 𝑋 𝐵 ∈ 𝑆)) | |
| 3 | 2 | pm5.32i 454 | . 2 ⊢ ((𝐵 ∈ 𝐴 ∧ 𝐵 ∈ ∩ 𝑥 ∈ 𝑋 𝑆) ↔ (𝐵 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝑋 𝐵 ∈ 𝑆)) | 
| 4 | 1, 3 | bitri 184 | 1 ⊢ (𝐵 ∈ (𝐴 ∩ ∩ 𝑥 ∈ 𝑋 𝑆) ↔ (𝐵 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝑋 𝐵 ∈ 𝑆)) | 
| Colors of variables: wff set class | 
| Syntax hints: ∧ wa 104 ↔ wb 105 ∈ wcel 2167 ∀wral 2475 ∩ cin 3156 ∩ ciin 3917 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-v 2765 df-in 3163 df-iin 3919 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |