ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  riin0 Unicode version

Theorem riin0 3970
Description: Relative intersection of an empty family. (Contributed by Stefan O'Rear, 3-Apr-2015.)
Assertion
Ref Expression
riin0  |-  ( X  =  (/)  ->  ( A  i^i  |^|_ x  e.  X  S )  =  A )
Distinct variable groups:    x, A    x, X
Allowed substitution hint:    S( x)

Proof of Theorem riin0
StepHypRef Expression
1 iineq1 3912 . . 3  |-  ( X  =  (/)  ->  |^|_ x  e.  X  S  =  |^|_
x  e.  (/)  S )
21ineq2d 3348 . 2  |-  ( X  =  (/)  ->  ( A  i^i  |^|_ x  e.  X  S )  =  ( A  i^i  |^|_ x  e.  (/)  S ) )
3 0iin 3957 . . . 4  |-  |^|_ x  e.  (/)  S  =  _V
43ineq2i 3345 . . 3  |-  ( A  i^i  |^|_ x  e.  (/)  S )  =  ( A  i^i  _V )
5 inv1 3471 . . 3  |-  ( A  i^i  _V )  =  A
64, 5eqtri 2208 . 2  |-  ( A  i^i  |^|_ x  e.  (/)  S )  =  A
72, 6eqtrdi 2236 1  |-  ( X  =  (/)  ->  ( A  i^i  |^|_ x  e.  X  S )  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1363   _Vcvv 2749    i^i cin 3140   (/)c0 3434   |^|_ciin 3899
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-ext 2169
This theorem depends on definitions:  df-bi 117  df-tru 1366  df-nf 1471  df-sb 1773  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ral 2470  df-v 2751  df-dif 3143  df-in 3147  df-ss 3154  df-nul 3435  df-iin 3901
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator