ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  riin0 Unicode version

Theorem riin0 3988
Description: Relative intersection of an empty family. (Contributed by Stefan O'Rear, 3-Apr-2015.)
Assertion
Ref Expression
riin0  |-  ( X  =  (/)  ->  ( A  i^i  |^|_ x  e.  X  S )  =  A )
Distinct variable groups:    x, A    x, X
Allowed substitution hint:    S( x)

Proof of Theorem riin0
StepHypRef Expression
1 iineq1 3930 . . 3  |-  ( X  =  (/)  ->  |^|_ x  e.  X  S  =  |^|_
x  e.  (/)  S )
21ineq2d 3364 . 2  |-  ( X  =  (/)  ->  ( A  i^i  |^|_ x  e.  X  S )  =  ( A  i^i  |^|_ x  e.  (/)  S ) )
3 0iin 3975 . . . 4  |-  |^|_ x  e.  (/)  S  =  _V
43ineq2i 3361 . . 3  |-  ( A  i^i  |^|_ x  e.  (/)  S )  =  ( A  i^i  _V )
5 inv1 3487 . . 3  |-  ( A  i^i  _V )  =  A
64, 5eqtri 2217 . 2  |-  ( A  i^i  |^|_ x  e.  (/)  S )  =  A
72, 6eqtrdi 2245 1  |-  ( X  =  (/)  ->  ( A  i^i  |^|_ x  e.  X  S )  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364   _Vcvv 2763    i^i cin 3156   (/)c0 3450   |^|_ciin 3917
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-v 2765  df-dif 3159  df-in 3163  df-ss 3170  df-nul 3451  df-iin 3919
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator