ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  riin0 Unicode version

Theorem riin0 3884
Description: Relative intersection of an empty family. (Contributed by Stefan O'Rear, 3-Apr-2015.)
Assertion
Ref Expression
riin0  |-  ( X  =  (/)  ->  ( A  i^i  |^|_ x  e.  X  S )  =  A )
Distinct variable groups:    x, A    x, X
Allowed substitution hint:    S( x)

Proof of Theorem riin0
StepHypRef Expression
1 iineq1 3827 . . 3  |-  ( X  =  (/)  ->  |^|_ x  e.  X  S  =  |^|_
x  e.  (/)  S )
21ineq2d 3277 . 2  |-  ( X  =  (/)  ->  ( A  i^i  |^|_ x  e.  X  S )  =  ( A  i^i  |^|_ x  e.  (/)  S ) )
3 0iin 3871 . . . 4  |-  |^|_ x  e.  (/)  S  =  _V
43ineq2i 3274 . . 3  |-  ( A  i^i  |^|_ x  e.  (/)  S )  =  ( A  i^i  _V )
5 inv1 3399 . . 3  |-  ( A  i^i  _V )  =  A
64, 5eqtri 2160 . 2  |-  ( A  i^i  |^|_ x  e.  (/)  S )  =  A
72, 6syl6eq 2188 1  |-  ( X  =  (/)  ->  ( A  i^i  |^|_ x  e.  X  S )  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1331   _Vcvv 2686    i^i cin 3070   (/)c0 3363   |^|_ciin 3814
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121
This theorem depends on definitions:  df-bi 116  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-v 2688  df-dif 3073  df-in 3077  df-ss 3084  df-nul 3364  df-iin 3816
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator