Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eliin | Unicode version |
Description: Membership in indexed intersection. (Contributed by NM, 3-Sep-2003.) |
Ref | Expression |
---|---|
eliin |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2229 | . . 3 | |
2 | 1 | ralbidv 2466 | . 2 |
3 | df-iin 3869 | . 2 | |
4 | 2, 3 | elab2g 2873 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 wceq 1343 wcel 2136 wral 2444 ciin 3867 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-v 2728 df-iin 3869 |
This theorem is referenced by: iinconstm 3875 iuniin 3876 iinss1 3878 ssiinf 3915 iinss 3917 iinss2 3918 iinab 3927 iundif2ss 3931 iindif2m 3933 iinin2m 3934 elriin 3936 iinpw 3956 xpiindim 4741 cnviinm 5145 iinerm 6573 ixpiinm 6690 |
Copyright terms: Public domain | W3C validator |