Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  eliin Unicode version

Theorem eliin 3818
 Description: Membership in indexed intersection. (Contributed by NM, 3-Sep-2003.)
Assertion
Ref Expression
eliin
Distinct variable group:   ,
Allowed substitution hints:   ()   ()   ()

Proof of Theorem eliin
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 eleq1 2202 . . 3
21ralbidv 2437 . 2
3 df-iin 3816 . 2
42, 3elab2g 2831 1
 Colors of variables: wff set class Syntax hints:   wi 4   wb 104   wceq 1331   wcel 1480  wral 2416  ciin 3814 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121 This theorem depends on definitions:  df-bi 116  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-v 2688  df-iin 3816 This theorem is referenced by:  iinconstm  3822  iuniin  3823  iinss1  3825  ssiinf  3862  iinss  3864  iinss2  3865  iinab  3874  iundif2ss  3878  iindif2m  3880  iinin2m  3881  elriin  3883  iinpw  3903  xpiindim  4676  cnviinm  5080  iinerm  6501  ixpiinm  6618
 Copyright terms: Public domain W3C validator