ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eliin Unicode version

Theorem eliin 3946
Description: Membership in indexed intersection. (Contributed by NM, 3-Sep-2003.)
Assertion
Ref Expression
eliin  |-  ( A  e.  V  ->  ( A  e.  |^|_ x  e.  B  C  <->  A. x  e.  B  A  e.  C ) )
Distinct variable group:    x, A
Allowed substitution hints:    B( x)    C( x)    V( x)

Proof of Theorem eliin
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 eleq1 2270 . . 3  |-  ( y  =  A  ->  (
y  e.  C  <->  A  e.  C ) )
21ralbidv 2508 . 2  |-  ( y  =  A  ->  ( A. x  e.  B  y  e.  C  <->  A. x  e.  B  A  e.  C ) )
3 df-iin 3944 . 2  |-  |^|_ x  e.  B  C  =  { y  |  A. x  e.  B  y  e.  C }
42, 3elab2g 2927 1  |-  ( A  e.  V  ->  ( A  e.  |^|_ x  e.  B  C  <->  A. x  e.  B  A  e.  C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1373    e. wcel 2178   A.wral 2486   |^|_ciin 3942
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-v 2778  df-iin 3944
This theorem is referenced by:  iinconstm  3950  iuniin  3951  iinss1  3953  ssiinf  3991  iinss  3993  iinss2  3994  iinab  4003  iundif2ss  4007  iindif2m  4009  iinin2m  4010  elriin  4012  iinpw  4032  xpiindim  4833  cnviinm  5243  iinerm  6717  ixpiinm  6834
  Copyright terms: Public domain W3C validator