ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eliin Unicode version

Theorem eliin 3931
Description: Membership in indexed intersection. (Contributed by NM, 3-Sep-2003.)
Assertion
Ref Expression
eliin  |-  ( A  e.  V  ->  ( A  e.  |^|_ x  e.  B  C  <->  A. x  e.  B  A  e.  C ) )
Distinct variable group:    x, A
Allowed substitution hints:    B( x)    C( x)    V( x)

Proof of Theorem eliin
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 eleq1 2267 . . 3  |-  ( y  =  A  ->  (
y  e.  C  <->  A  e.  C ) )
21ralbidv 2505 . 2  |-  ( y  =  A  ->  ( A. x  e.  B  y  e.  C  <->  A. x  e.  B  A  e.  C ) )
3 df-iin 3929 . 2  |-  |^|_ x  e.  B  C  =  { y  |  A. x  e.  B  y  e.  C }
42, 3elab2g 2919 1  |-  ( A  e.  V  ->  ( A  e.  |^|_ x  e.  B  C  <->  A. x  e.  B  A  e.  C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1372    e. wcel 2175   A.wral 2483   |^|_ciin 3927
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-v 2773  df-iin 3929
This theorem is referenced by:  iinconstm  3935  iuniin  3936  iinss1  3938  ssiinf  3976  iinss  3978  iinss2  3979  iinab  3988  iundif2ss  3992  iindif2m  3994  iinin2m  3995  elriin  3997  iinpw  4017  xpiindim  4814  cnviinm  5223  iinerm  6693  ixpiinm  6810
  Copyright terms: Public domain W3C validator