ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rint0 Unicode version

Theorem rint0 3924
Description: Relative intersection of an empty set. (Contributed by Stefan O'Rear, 3-Apr-2015.)
Assertion
Ref Expression
rint0  |-  ( X  =  (/)  ->  ( A  i^i  |^| X )  =  A )

Proof of Theorem rint0
StepHypRef Expression
1 inteq 3888 . . 3  |-  ( X  =  (/)  ->  |^| X  =  |^| (/) )
21ineq2d 3374 . 2  |-  ( X  =  (/)  ->  ( A  i^i  |^| X )  =  ( A  i^i  |^| (/) ) )
3 int0 3899 . . . 4  |-  |^| (/)  =  _V
43ineq2i 3371 . . 3  |-  ( A  i^i  |^| (/) )  =  ( A  i^i  _V )
5 inv1 3497 . . 3  |-  ( A  i^i  _V )  =  A
64, 5eqtri 2226 . 2  |-  ( A  i^i  |^| (/) )  =  A
72, 6eqtrdi 2254 1  |-  ( X  =  (/)  ->  ( A  i^i  |^| X )  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373   _Vcvv 2772    i^i cin 3165   (/)c0 3460   |^|cint 3885
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-v 2774  df-dif 3168  df-in 3172  df-ss 3179  df-nul 3461  df-int 3886
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator