ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rint0 Unicode version

Theorem rint0 3923
Description: Relative intersection of an empty set. (Contributed by Stefan O'Rear, 3-Apr-2015.)
Assertion
Ref Expression
rint0  |-  ( X  =  (/)  ->  ( A  i^i  |^| X )  =  A )

Proof of Theorem rint0
StepHypRef Expression
1 inteq 3887 . . 3  |-  ( X  =  (/)  ->  |^| X  =  |^| (/) )
21ineq2d 3373 . 2  |-  ( X  =  (/)  ->  ( A  i^i  |^| X )  =  ( A  i^i  |^| (/) ) )
3 int0 3898 . . . 4  |-  |^| (/)  =  _V
43ineq2i 3370 . . 3  |-  ( A  i^i  |^| (/) )  =  ( A  i^i  _V )
5 inv1 3496 . . 3  |-  ( A  i^i  _V )  =  A
64, 5eqtri 2225 . 2  |-  ( A  i^i  |^| (/) )  =  A
72, 6eqtrdi 2253 1  |-  ( X  =  (/)  ->  ( A  i^i  |^| X )  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1372   _Vcvv 2771    i^i cin 3164   (/)c0 3459   |^|cint 3884
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-v 2773  df-dif 3167  df-in 3171  df-ss 3178  df-nul 3460  df-int 3885
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator