ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rint0 Unicode version

Theorem rint0 3885
Description: Relative intersection of an empty set. (Contributed by Stefan O'Rear, 3-Apr-2015.)
Assertion
Ref Expression
rint0  |-  ( X  =  (/)  ->  ( A  i^i  |^| X )  =  A )

Proof of Theorem rint0
StepHypRef Expression
1 inteq 3849 . . 3  |-  ( X  =  (/)  ->  |^| X  =  |^| (/) )
21ineq2d 3338 . 2  |-  ( X  =  (/)  ->  ( A  i^i  |^| X )  =  ( A  i^i  |^| (/) ) )
3 int0 3860 . . . 4  |-  |^| (/)  =  _V
43ineq2i 3335 . . 3  |-  ( A  i^i  |^| (/) )  =  ( A  i^i  _V )
5 inv1 3461 . . 3  |-  ( A  i^i  _V )  =  A
64, 5eqtri 2198 . 2  |-  ( A  i^i  |^| (/) )  =  A
72, 6eqtrdi 2226 1  |-  ( X  =  (/)  ->  ( A  i^i  |^| X )  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1353   _Vcvv 2739    i^i cin 3130   (/)c0 3424   |^|cint 3846
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-v 2741  df-dif 3133  df-in 3137  df-ss 3144  df-nul 3425  df-int 3847
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator