Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elrint | GIF version |
Description: Membership in a restricted intersection. (Contributed by Stefan O'Rear, 3-Apr-2015.) |
Ref | Expression |
---|---|
elrint | ⊢ (𝑋 ∈ (𝐴 ∩ ∩ 𝐵) ↔ (𝑋 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐵 𝑋 ∈ 𝑦)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elin 3310 | . 2 ⊢ (𝑋 ∈ (𝐴 ∩ ∩ 𝐵) ↔ (𝑋 ∈ 𝐴 ∧ 𝑋 ∈ ∩ 𝐵)) | |
2 | elintg 3839 | . . 3 ⊢ (𝑋 ∈ 𝐴 → (𝑋 ∈ ∩ 𝐵 ↔ ∀𝑦 ∈ 𝐵 𝑋 ∈ 𝑦)) | |
3 | 2 | pm5.32i 451 | . 2 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑋 ∈ ∩ 𝐵) ↔ (𝑋 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐵 𝑋 ∈ 𝑦)) |
4 | 1, 3 | bitri 183 | 1 ⊢ (𝑋 ∈ (𝐴 ∩ ∩ 𝐵) ↔ (𝑋 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐵 𝑋 ∈ 𝑦)) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 ↔ wb 104 ∈ wcel 2141 ∀wral 2448 ∩ cin 3120 ∩ cint 3831 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-v 2732 df-in 3127 df-int 3832 |
This theorem is referenced by: elrint2 3872 |
Copyright terms: Public domain | W3C validator |