ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elintg Unicode version

Theorem elintg 3702
Description: Membership in class intersection, with the sethood requirement expressed as an antecedent. (Contributed by NM, 20-Nov-2003.)
Assertion
Ref Expression
elintg  |-  ( A  e.  V  ->  ( A  e.  |^| B  <->  A. x  e.  B  A  e.  x ) )
Distinct variable groups:    x, A    x, B
Allowed substitution hint:    V( x)

Proof of Theorem elintg
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 eleq1 2151 . 2  |-  ( y  =  A  ->  (
y  e.  |^| B  <->  A  e.  |^| B ) )
2 eleq1 2151 . . 3  |-  ( y  =  A  ->  (
y  e.  x  <->  A  e.  x ) )
32ralbidv 2381 . 2  |-  ( y  =  A  ->  ( A. x  e.  B  y  e.  x  <->  A. x  e.  B  A  e.  x ) )
4 vex 2623 . . 3  |-  y  e. 
_V
54elint2 3701 . 2  |-  ( y  e.  |^| B  <->  A. x  e.  B  y  e.  x )
61, 3, 5vtoclbg 2681 1  |-  ( A  e.  V  ->  ( A  e.  |^| B  <->  A. x  e.  B  A  e.  x ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    = wceq 1290    e. wcel 1439   A.wral 2360   |^|cint 3694
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071
This theorem depends on definitions:  df-bi 116  df-tru 1293  df-nf 1396  df-sb 1694  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-ral 2365  df-v 2622  df-int 3695
This theorem is referenced by:  elinti  3703  elrint  3734  peano2  4423  pitonn  7439  peano1nnnn  7443  peano2nnnn  7444  1nn  8487  peano2nn  8488
  Copyright terms: Public domain W3C validator