ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elintg Unicode version

Theorem elintg 3853
Description: Membership in class intersection, with the sethood requirement expressed as an antecedent. (Contributed by NM, 20-Nov-2003.)
Assertion
Ref Expression
elintg  |-  ( A  e.  V  ->  ( A  e.  |^| B  <->  A. x  e.  B  A  e.  x ) )
Distinct variable groups:    x, A    x, B
Allowed substitution hint:    V( x)

Proof of Theorem elintg
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 eleq1 2240 . 2  |-  ( y  =  A  ->  (
y  e.  |^| B  <->  A  e.  |^| B ) )
2 eleq1 2240 . . 3  |-  ( y  =  A  ->  (
y  e.  x  <->  A  e.  x ) )
32ralbidv 2477 . 2  |-  ( y  =  A  ->  ( A. x  e.  B  y  e.  x  <->  A. x  e.  B  A  e.  x ) )
4 vex 2741 . . 3  |-  y  e. 
_V
54elint2 3852 . 2  |-  ( y  e.  |^| B  <->  A. x  e.  B  y  e.  x )
61, 3, 5vtoclbg 2799 1  |-  ( A  e.  V  ->  ( A  e.  |^| B  <->  A. x  e.  B  A  e.  x ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1353    e. wcel 2148   A.wral 2455   |^|cint 3845
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-v 2740  df-int 3846
This theorem is referenced by:  elinti  3854  elrint  3885  peano2  4595  pitonn  7847  peano1nnnn  7851  peano2nnnn  7852  1nn  8930  peano2nn  8931  subgintm  13058  subrgintm  13364
  Copyright terms: Public domain W3C validator