ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elintg Unicode version

Theorem elintg 3848
Description: Membership in class intersection, with the sethood requirement expressed as an antecedent. (Contributed by NM, 20-Nov-2003.)
Assertion
Ref Expression
elintg  |-  ( A  e.  V  ->  ( A  e.  |^| B  <->  A. x  e.  B  A  e.  x ) )
Distinct variable groups:    x, A    x, B
Allowed substitution hint:    V( x)

Proof of Theorem elintg
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 eleq1 2238 . 2  |-  ( y  =  A  ->  (
y  e.  |^| B  <->  A  e.  |^| B ) )
2 eleq1 2238 . . 3  |-  ( y  =  A  ->  (
y  e.  x  <->  A  e.  x ) )
32ralbidv 2475 . 2  |-  ( y  =  A  ->  ( A. x  e.  B  y  e.  x  <->  A. x  e.  B  A  e.  x ) )
4 vex 2738 . . 3  |-  y  e. 
_V
54elint2 3847 . 2  |-  ( y  e.  |^| B  <->  A. x  e.  B  y  e.  x )
61, 3, 5vtoclbg 2796 1  |-  ( A  e.  V  ->  ( A  e.  |^| B  <->  A. x  e.  B  A  e.  x ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1353    e. wcel 2146   A.wral 2453   |^|cint 3840
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-ext 2157
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1459  df-sb 1761  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ral 2458  df-v 2737  df-int 3841
This theorem is referenced by:  elinti  3849  elrint  3880  peano2  4588  pitonn  7822  peano1nnnn  7826  peano2nnnn  7827  1nn  8901  peano2nn  8902
  Copyright terms: Public domain W3C validator