Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elintg | Unicode version |
Description: Membership in class intersection, with the sethood requirement expressed as an antecedent. (Contributed by NM, 20-Nov-2003.) |
Ref | Expression |
---|---|
elintg |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2238 | . 2 | |
2 | eleq1 2238 | . . 3 | |
3 | 2 | ralbidv 2475 | . 2 |
4 | vex 2738 | . . 3 | |
5 | 4 | elint2 3847 | . 2 |
6 | 1, 3, 5 | vtoclbg 2796 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 105 wceq 1353 wcel 2146 wral 2453 cint 3840 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ral 2458 df-v 2737 df-int 3841 |
This theorem is referenced by: elinti 3849 elrint 3880 peano2 4588 pitonn 7822 peano1nnnn 7826 peano2nnnn 7827 1nn 8901 peano2nn 8902 |
Copyright terms: Public domain | W3C validator |