ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eltpi GIF version

Theorem eltpi 3681
Description: A member of an unordered triple of classes is one of them. (Contributed by Mario Carneiro, 11-Feb-2015.)
Assertion
Ref Expression
eltpi (𝐴 ∈ {𝐵, 𝐶, 𝐷} → (𝐴 = 𝐵𝐴 = 𝐶𝐴 = 𝐷))

Proof of Theorem eltpi
StepHypRef Expression
1 eltpg 3679 . 2 (𝐴 ∈ {𝐵, 𝐶, 𝐷} → (𝐴 ∈ {𝐵, 𝐶, 𝐷} ↔ (𝐴 = 𝐵𝐴 = 𝐶𝐴 = 𝐷)))
21ibi 176 1 (𝐴 ∈ {𝐵, 𝐶, 𝐷} → (𝐴 = 𝐵𝐴 = 𝐶𝐴 = 𝐷))
Colors of variables: wff set class
Syntax hints:  wi 4  w3o 980   = wceq 1373  wcel 2177  {ctp 3636
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-3or 982  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-v 2775  df-un 3171  df-sn 3640  df-pr 3641  df-tp 3642
This theorem is referenced by:  prm23lt5  12630  perfectlem2  15516  zabsle1  15520
  Copyright terms: Public domain W3C validator