Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eltpi | GIF version |
Description: A member of an unordered triple of classes is one of them. (Contributed by Mario Carneiro, 11-Feb-2015.) |
Ref | Expression |
---|---|
eltpi | ⊢ (𝐴 ∈ {𝐵, 𝐶, 𝐷} → (𝐴 = 𝐵 ∨ 𝐴 = 𝐶 ∨ 𝐴 = 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eltpg 3620 | . 2 ⊢ (𝐴 ∈ {𝐵, 𝐶, 𝐷} → (𝐴 ∈ {𝐵, 𝐶, 𝐷} ↔ (𝐴 = 𝐵 ∨ 𝐴 = 𝐶 ∨ 𝐴 = 𝐷))) | |
2 | 1 | ibi 175 | 1 ⊢ (𝐴 ∈ {𝐵, 𝐶, 𝐷} → (𝐴 = 𝐵 ∨ 𝐴 = 𝐶 ∨ 𝐴 = 𝐷)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∨ w3o 967 = wceq 1343 ∈ wcel 2136 {ctp 3577 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-3or 969 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2296 df-v 2727 df-un 3119 df-sn 3581 df-pr 3582 df-tp 3583 |
This theorem is referenced by: prm23lt5 12191 zabsle1 13500 |
Copyright terms: Public domain | W3C validator |