ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eldiftp Unicode version

Theorem eldiftp 3668
Description: Membership in a set with three elements removed. Similar to eldifsn 3749 and eldifpr 3649. (Contributed by David A. Wheeler, 22-Jul-2017.)
Assertion
Ref Expression
eldiftp  |-  ( A  e.  ( B  \  { C ,  D ,  E } )  <->  ( A  e.  B  /\  ( A  =/=  C  /\  A  =/=  D  /\  A  =/= 
E ) ) )

Proof of Theorem eldiftp
StepHypRef Expression
1 eldif 3166 . 2  |-  ( A  e.  ( B  \  { C ,  D ,  E } )  <->  ( A  e.  B  /\  -.  A  e.  { C ,  D ,  E } ) )
2 eltpg 3667 . . . . 5  |-  ( A  e.  B  ->  ( A  e.  { C ,  D ,  E }  <->  ( A  =  C  \/  A  =  D  \/  A  =  E )
) )
32notbid 668 . . . 4  |-  ( A  e.  B  ->  ( -.  A  e.  { C ,  D ,  E }  <->  -.  ( A  =  C  \/  A  =  D  \/  A  =  E ) ) )
4 ne3anior 2455 . . . 4  |-  ( ( A  =/=  C  /\  A  =/=  D  /\  A  =/=  E )  <->  -.  ( A  =  C  \/  A  =  D  \/  A  =  E )
)
53, 4bitr4di 198 . . 3  |-  ( A  e.  B  ->  ( -.  A  e.  { C ,  D ,  E }  <->  ( A  =/=  C  /\  A  =/=  D  /\  A  =/=  E ) ) )
65pm5.32i 454 . 2  |-  ( ( A  e.  B  /\  -.  A  e.  { C ,  D ,  E }
)  <->  ( A  e.  B  /\  ( A  =/=  C  /\  A  =/=  D  /\  A  =/= 
E ) ) )
71, 6bitri 184 1  |-  ( A  e.  ( B  \  { C ,  D ,  E } )  <->  ( A  e.  B  /\  ( A  =/=  C  /\  A  =/=  D  /\  A  =/= 
E ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    /\ wa 104    <-> wb 105    \/ w3o 979    /\ w3a 980    = wceq 1364    e. wcel 2167    =/= wne 2367    \ cdif 3154   {ctp 3624
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-v 2765  df-dif 3159  df-un 3161  df-sn 3628  df-pr 3629  df-tp 3630
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator