ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iunsuc Unicode version

Theorem iunsuc 4485
Description: Inductive definition for the indexed union at a successor. (Contributed by Mario Carneiro, 4-Feb-2013.) (Proof shortened by Mario Carneiro, 18-Nov-2016.)
Hypotheses
Ref Expression
iunsuc.1  |-  A  e. 
_V
iunsuc.2  |-  ( x  =  A  ->  B  =  C )
Assertion
Ref Expression
iunsuc  |-  U_ x  e.  suc  A B  =  ( U_ x  e.  A  B  u.  C
)
Distinct variable groups:    x, A    x, C
Allowed substitution hint:    B( x)

Proof of Theorem iunsuc
StepHypRef Expression
1 df-suc 4436 . . 3  |-  suc  A  =  ( A  u.  { A } )
2 iuneq1 3954 . . 3  |-  ( suc 
A  =  ( A  u.  { A }
)  ->  U_ x  e. 
suc  A B  = 
U_ x  e.  ( A  u.  { A } ) B )
31, 2ax-mp 5 . 2  |-  U_ x  e.  suc  A B  = 
U_ x  e.  ( A  u.  { A } ) B
4 iunxun 4021 . 2  |-  U_ x  e.  ( A  u.  { A } ) B  =  ( U_ x  e.  A  B  u.  U_ x  e.  { A } B )
5 iunsuc.1 . . . 4  |-  A  e. 
_V
6 iunsuc.2 . . . 4  |-  ( x  =  A  ->  B  =  C )
75, 6iunxsn 4018 . . 3  |-  U_ x  e.  { A } B  =  C
87uneq2i 3332 . 2  |-  ( U_ x  e.  A  B  u.  U_ x  e.  { A } B )  =  ( U_ x  e.  A  B  u.  C
)
93, 4, 83eqtri 2232 1  |-  U_ x  e.  suc  A B  =  ( U_ x  e.  A  B  u.  C
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    e. wcel 2178   _Vcvv 2776    u. cun 3172   {csn 3643   U_ciun 3941   suc csuc 4430
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-sbc 3006  df-un 3178  df-in 3180  df-ss 3187  df-sn 3649  df-iun 3943  df-suc 4436
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator