ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iunsuc Unicode version

Theorem iunsuc 4405
Description: Inductive definition for the indexed union at a successor. (Contributed by Mario Carneiro, 4-Feb-2013.) (Proof shortened by Mario Carneiro, 18-Nov-2016.)
Hypotheses
Ref Expression
iunsuc.1  |-  A  e. 
_V
iunsuc.2  |-  ( x  =  A  ->  B  =  C )
Assertion
Ref Expression
iunsuc  |-  U_ x  e.  suc  A B  =  ( U_ x  e.  A  B  u.  C
)
Distinct variable groups:    x, A    x, C
Allowed substitution hint:    B( x)

Proof of Theorem iunsuc
StepHypRef Expression
1 df-suc 4356 . . 3  |-  suc  A  =  ( A  u.  { A } )
2 iuneq1 3886 . . 3  |-  ( suc 
A  =  ( A  u.  { A }
)  ->  U_ x  e. 
suc  A B  = 
U_ x  e.  ( A  u.  { A } ) B )
31, 2ax-mp 5 . 2  |-  U_ x  e.  suc  A B  = 
U_ x  e.  ( A  u.  { A } ) B
4 iunxun 3952 . 2  |-  U_ x  e.  ( A  u.  { A } ) B  =  ( U_ x  e.  A  B  u.  U_ x  e.  { A } B )
5 iunsuc.1 . . . 4  |-  A  e. 
_V
6 iunsuc.2 . . . 4  |-  ( x  =  A  ->  B  =  C )
75, 6iunxsn 3949 . . 3  |-  U_ x  e.  { A } B  =  C
87uneq2i 3278 . 2  |-  ( U_ x  e.  A  B  u.  U_ x  e.  { A } B )  =  ( U_ x  e.  A  B  u.  C
)
93, 4, 83eqtri 2195 1  |-  U_ x  e.  suc  A B  =  ( U_ x  e.  A  B  u.  C
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1348    e. wcel 2141   _Vcvv 2730    u. cun 3119   {csn 3583   U_ciun 3873   suc csuc 4350
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-sbc 2956  df-un 3125  df-in 3127  df-ss 3134  df-sn 3589  df-iun 3875  df-suc 4356
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator