ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nsuceq0g Unicode version

Theorem nsuceq0g 4453
Description: No successor is empty. (Contributed by Jim Kingdon, 14-Oct-2018.)
Assertion
Ref Expression
nsuceq0g  |-  ( A  e.  V  ->  suc  A  =/=  (/) )

Proof of Theorem nsuceq0g
StepHypRef Expression
1 noel 3454 . . 3  |-  -.  A  e.  (/)
2 sucidg 4451 . . . 4  |-  ( A  e.  V  ->  A  e.  suc  A )
3 eleq2 2260 . . . 4  |-  ( suc 
A  =  (/)  ->  ( A  e.  suc  A  <->  A  e.  (/) ) )
42, 3syl5ibcom 155 . . 3  |-  ( A  e.  V  ->  ( suc  A  =  (/)  ->  A  e.  (/) ) )
51, 4mtoi 665 . 2  |-  ( A  e.  V  ->  -.  suc  A  =  (/) )
65neneqad 2446 1  |-  ( A  e.  V  ->  suc  A  =/=  (/) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 2167    =/= wne 2367   (/)c0 3450   suc csuc 4400
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-v 2765  df-dif 3159  df-un 3161  df-nul 3451  df-sn 3628  df-suc 4406
This theorem is referenced by:  onsucelsucexmid  4566  peano3  4632  frec0g  6455  2on0  6484  zfz1iso  10933
  Copyright terms: Public domain W3C validator