ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nsuceq0g Unicode version

Theorem nsuceq0g 4509
Description: No successor is empty. (Contributed by Jim Kingdon, 14-Oct-2018.)
Assertion
Ref Expression
nsuceq0g  |-  ( A  e.  V  ->  suc  A  =/=  (/) )

Proof of Theorem nsuceq0g
StepHypRef Expression
1 noel 3495 . . 3  |-  -.  A  e.  (/)
2 sucidg 4507 . . . 4  |-  ( A  e.  V  ->  A  e.  suc  A )
3 eleq2 2293 . . . 4  |-  ( suc 
A  =  (/)  ->  ( A  e.  suc  A  <->  A  e.  (/) ) )
42, 3syl5ibcom 155 . . 3  |-  ( A  e.  V  ->  ( suc  A  =  (/)  ->  A  e.  (/) ) )
51, 4mtoi 668 . 2  |-  ( A  e.  V  ->  -.  suc  A  =  (/) )
65neneqad 2479 1  |-  ( A  e.  V  ->  suc  A  =/=  (/) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1395    e. wcel 2200    =/= wne 2400   (/)c0 3491   suc csuc 4456
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-v 2801  df-dif 3199  df-un 3201  df-nul 3492  df-sn 3672  df-suc 4462
This theorem is referenced by:  onsucelsucexmid  4622  peano3  4688  frec0g  6543  2on0  6572  zfz1iso  11063
  Copyright terms: Public domain W3C validator