ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nsuceq0g Unicode version

Theorem nsuceq0g 4396
Description: No successor is empty. (Contributed by Jim Kingdon, 14-Oct-2018.)
Assertion
Ref Expression
nsuceq0g  |-  ( A  e.  V  ->  suc  A  =/=  (/) )

Proof of Theorem nsuceq0g
StepHypRef Expression
1 noel 3413 . . 3  |-  -.  A  e.  (/)
2 sucidg 4394 . . . 4  |-  ( A  e.  V  ->  A  e.  suc  A )
3 eleq2 2230 . . . 4  |-  ( suc 
A  =  (/)  ->  ( A  e.  suc  A  <->  A  e.  (/) ) )
42, 3syl5ibcom 154 . . 3  |-  ( A  e.  V  ->  ( suc  A  =  (/)  ->  A  e.  (/) ) )
51, 4mtoi 654 . 2  |-  ( A  e.  V  ->  -.  suc  A  =  (/) )
65neneqad 2415 1  |-  ( A  e.  V  ->  suc  A  =/=  (/) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1343    e. wcel 2136    =/= wne 2336   (/)c0 3409   suc csuc 4343
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-v 2728  df-dif 3118  df-un 3120  df-nul 3410  df-sn 3582  df-suc 4349
This theorem is referenced by:  onsucelsucexmid  4507  peano3  4573  frec0g  6365  2on0  6394  zfz1iso  10754
  Copyright terms: Public domain W3C validator