Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nsuceq0g | Unicode version |
Description: No successor is empty. (Contributed by Jim Kingdon, 14-Oct-2018.) |
Ref | Expression |
---|---|
nsuceq0g |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | noel 3413 | . . 3 | |
2 | sucidg 4394 | . . . 4 | |
3 | eleq2 2230 | . . . 4 | |
4 | 2, 3 | syl5ibcom 154 | . . 3 |
5 | 1, 4 | mtoi 654 | . 2 |
6 | 5 | neneqad 2415 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1343 wcel 2136 wne 2336 c0 3409 csuc 4343 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-v 2728 df-dif 3118 df-un 3120 df-nul 3410 df-sn 3582 df-suc 4349 |
This theorem is referenced by: onsucelsucexmid 4507 peano3 4573 frec0g 6365 2on0 6394 zfz1iso 10754 |
Copyright terms: Public domain | W3C validator |