ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nsuceq0g Unicode version

Theorem nsuceq0g 4483
Description: No successor is empty. (Contributed by Jim Kingdon, 14-Oct-2018.)
Assertion
Ref Expression
nsuceq0g  |-  ( A  e.  V  ->  suc  A  =/=  (/) )

Proof of Theorem nsuceq0g
StepHypRef Expression
1 noel 3472 . . 3  |-  -.  A  e.  (/)
2 sucidg 4481 . . . 4  |-  ( A  e.  V  ->  A  e.  suc  A )
3 eleq2 2271 . . . 4  |-  ( suc 
A  =  (/)  ->  ( A  e.  suc  A  <->  A  e.  (/) ) )
42, 3syl5ibcom 155 . . 3  |-  ( A  e.  V  ->  ( suc  A  =  (/)  ->  A  e.  (/) ) )
51, 4mtoi 666 . 2  |-  ( A  e.  V  ->  -.  suc  A  =  (/) )
65neneqad 2457 1  |-  ( A  e.  V  ->  suc  A  =/=  (/) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    e. wcel 2178    =/= wne 2378   (/)c0 3468   suc csuc 4430
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-v 2778  df-dif 3176  df-un 3178  df-nul 3469  df-sn 3649  df-suc 4436
This theorem is referenced by:  onsucelsucexmid  4596  peano3  4662  frec0g  6506  2on0  6535  zfz1iso  11023
  Copyright terms: Public domain W3C validator