| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sucid | Unicode version | ||
| Description: A set belongs to its successor. (Contributed by NM, 22-Jun-1994.) (Proof shortened by Alan Sare, 18-Feb-2012.) (Proof shortened by Scott Fenton, 20-Feb-2012.) |
| Ref | Expression |
|---|---|
| sucid.1 |
|
| Ref | Expression |
|---|---|
| sucid |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sucid.1 |
. 2
| |
| 2 | sucidg 4464 |
. 2
| |
| 3 | 1, 2 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-un 3170 df-sn 3639 df-suc 4419 |
| This theorem is referenced by: eqelsuc 4467 unon 4560 ordunisuc2r 4563 ordsoexmid 4611 limom 4663 0elnn 4668 tfrexlem 6422 tfri1dALT 6439 tfrcl 6452 frecabcl 6487 phplem4 6954 fiintim 7030 fidcenumlemr 7059 nninfwlpoimlemginf 7280 pw1ne3 7344 sucpw1ne3 7346 sucpw1nel3 7347 prarloclemarch2 7534 prarloclemlt 7608 ennnfonelemex 12818 ennnfonelemrn 12823 bj-nn0suc0 15923 bj-nnelirr 15926 bj-inf2vnlem2 15944 bj-findis 15952 nninfsellemeq 15988 |
| Copyright terms: Public domain | W3C validator |