| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sucid | Unicode version | ||
| Description: A set belongs to its successor. (Contributed by NM, 22-Jun-1994.) (Proof shortened by Alan Sare, 18-Feb-2012.) (Proof shortened by Scott Fenton, 20-Feb-2012.) |
| Ref | Expression |
|---|---|
| sucid.1 |
|
| Ref | Expression |
|---|---|
| sucid |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sucid.1 |
. 2
| |
| 2 | sucidg 4507 |
. 2
| |
| 3 | 1, 2 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-un 3201 df-sn 3672 df-suc 4462 |
| This theorem is referenced by: eqelsuc 4510 unon 4603 ordunisuc2r 4606 ordsoexmid 4654 limom 4706 0elnn 4711 tfrexlem 6480 tfri1dALT 6497 tfrcl 6510 frecabcl 6545 phplem4 7016 fiintim 7093 fidcenumlemr 7122 nninfwlpoimlemginf 7343 pw1ne3 7415 sucpw1ne3 7417 sucpw1nel3 7418 prarloclemarch2 7606 prarloclemlt 7680 ennnfonelemex 12985 ennnfonelemrn 12990 bj-nn0suc0 16313 bj-nnelirr 16316 bj-inf2vnlem2 16334 bj-findis 16342 nninfsellemeq 16380 |
| Copyright terms: Public domain | W3C validator |