![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sucid | Unicode version |
Description: A set belongs to its successor. (Contributed by NM, 22-Jun-1994.) (Proof shortened by Alan Sare, 18-Feb-2012.) (Proof shortened by Scott Fenton, 20-Feb-2012.) |
Ref | Expression |
---|---|
sucid.1 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
sucid |
![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sucid.1 |
. 2
![]() ![]() ![]() ![]() | |
2 | sucidg 4447 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | ax-mp 5 |
1
![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-un 3157 df-sn 3624 df-suc 4402 |
This theorem is referenced by: eqelsuc 4450 unon 4543 ordunisuc2r 4546 ordsoexmid 4594 limom 4646 0elnn 4651 tfrexlem 6387 tfri1dALT 6404 tfrcl 6417 frecabcl 6452 phplem4 6911 fiintim 6985 fidcenumlemr 7014 nninfwlpoimlemginf 7235 pw1ne3 7290 sucpw1ne3 7292 sucpw1nel3 7293 prarloclemarch2 7479 prarloclemlt 7553 ennnfonelemex 12571 ennnfonelemrn 12576 bj-nn0suc0 15442 bj-nnelirr 15445 bj-inf2vnlem2 15463 bj-findis 15471 nninfsellemeq 15504 |
Copyright terms: Public domain | W3C validator |