| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sucid | Unicode version | ||
| Description: A set belongs to its successor. (Contributed by NM, 22-Jun-1994.) (Proof shortened by Alan Sare, 18-Feb-2012.) (Proof shortened by Scott Fenton, 20-Feb-2012.) |
| Ref | Expression |
|---|---|
| sucid.1 |
|
| Ref | Expression |
|---|---|
| sucid |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sucid.1 |
. 2
| |
| 2 | sucidg 4481 |
. 2
| |
| 3 | 1, 2 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-v 2778 df-un 3178 df-sn 3649 df-suc 4436 |
| This theorem is referenced by: eqelsuc 4484 unon 4577 ordunisuc2r 4580 ordsoexmid 4628 limom 4680 0elnn 4685 tfrexlem 6443 tfri1dALT 6460 tfrcl 6473 frecabcl 6508 phplem4 6977 fiintim 7054 fidcenumlemr 7083 nninfwlpoimlemginf 7304 pw1ne3 7376 sucpw1ne3 7378 sucpw1nel3 7379 prarloclemarch2 7567 prarloclemlt 7641 ennnfonelemex 12900 ennnfonelemrn 12905 bj-nn0suc0 16085 bj-nnelirr 16088 bj-inf2vnlem2 16106 bj-findis 16114 nninfsellemeq 16153 |
| Copyright terms: Public domain | W3C validator |