Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sucid | Unicode version |
Description: A set belongs to its successor. (Contributed by NM, 22-Jun-1994.) (Proof shortened by Alan Sare, 18-Feb-2012.) (Proof shortened by Scott Fenton, 20-Feb-2012.) |
Ref | Expression |
---|---|
sucid.1 |
Ref | Expression |
---|---|
sucid |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sucid.1 | . 2 | |
2 | sucidg 4376 | . 2 | |
3 | 1, 2 | ax-mp 5 | 1 |
Colors of variables: wff set class |
Syntax hints: wcel 2128 cvv 2712 csuc 4325 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-ext 2139 |
This theorem depends on definitions: df-bi 116 df-tru 1338 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-v 2714 df-un 3106 df-sn 3566 df-suc 4331 |
This theorem is referenced by: eqelsuc 4379 unon 4469 ordunisuc2r 4472 ordsoexmid 4520 limom 4572 0elnn 4577 tfrexlem 6278 tfri1dALT 6295 tfrcl 6308 frecabcl 6343 phplem4 6797 fiintim 6870 fidcenumlemr 6896 pw1ne3 7159 sucpw1ne3 7161 sucpw1nel3 7162 prarloclemarch2 7333 prarloclemlt 7407 ennnfonelemex 12126 ennnfonelemrn 12131 bj-nn0suc0 13496 bj-nnelirr 13499 bj-inf2vnlem2 13517 bj-findis 13525 nninfsellemeq 13557 |
Copyright terms: Public domain | W3C validator |