| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sucid | Unicode version | ||
| Description: A set belongs to its successor. (Contributed by NM, 22-Jun-1994.) (Proof shortened by Alan Sare, 18-Feb-2012.) (Proof shortened by Scott Fenton, 20-Feb-2012.) |
| Ref | Expression |
|---|---|
| sucid.1 |
|
| Ref | Expression |
|---|---|
| sucid |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sucid.1 |
. 2
| |
| 2 | sucidg 4463 |
. 2
| |
| 3 | 1, 2 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-un 3170 df-sn 3639 df-suc 4418 |
| This theorem is referenced by: eqelsuc 4466 unon 4559 ordunisuc2r 4562 ordsoexmid 4610 limom 4662 0elnn 4667 tfrexlem 6420 tfri1dALT 6437 tfrcl 6450 frecabcl 6485 phplem4 6952 fiintim 7028 fidcenumlemr 7057 nninfwlpoimlemginf 7278 pw1ne3 7342 sucpw1ne3 7344 sucpw1nel3 7345 prarloclemarch2 7532 prarloclemlt 7606 ennnfonelemex 12785 ennnfonelemrn 12790 bj-nn0suc0 15886 bj-nnelirr 15889 bj-inf2vnlem2 15907 bj-findis 15915 nninfsellemeq 15951 |
| Copyright terms: Public domain | W3C validator |