ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sucid Unicode version

Theorem sucid 4508
Description: A set belongs to its successor. (Contributed by NM, 22-Jun-1994.) (Proof shortened by Alan Sare, 18-Feb-2012.) (Proof shortened by Scott Fenton, 20-Feb-2012.)
Hypothesis
Ref Expression
sucid.1  |-  A  e. 
_V
Assertion
Ref Expression
sucid  |-  A  e. 
suc  A

Proof of Theorem sucid
StepHypRef Expression
1 sucid.1 . 2  |-  A  e. 
_V
2 sucidg 4507 . 2  |-  ( A  e.  _V  ->  A  e.  suc  A )
31, 2ax-mp 5 1  |-  A  e. 
suc  A
Colors of variables: wff set class
Syntax hints:    e. wcel 2200   _Vcvv 2799   suc csuc 4456
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-un 3201  df-sn 3672  df-suc 4462
This theorem is referenced by:  eqelsuc  4510  unon  4603  ordunisuc2r  4606  ordsoexmid  4654  limom  4706  0elnn  4711  tfrexlem  6480  tfri1dALT  6497  tfrcl  6510  frecabcl  6545  phplem4  7016  fiintim  7093  fidcenumlemr  7122  nninfwlpoimlemginf  7343  pw1ne3  7415  sucpw1ne3  7417  sucpw1nel3  7418  prarloclemarch2  7606  prarloclemlt  7680  ennnfonelemex  12985  ennnfonelemrn  12990  bj-nn0suc0  16313  bj-nnelirr  16316  bj-inf2vnlem2  16334  bj-findis  16342  nninfsellemeq  16380
  Copyright terms: Public domain W3C validator