Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > suceq | Unicode version |
Description: Equality of successors. (Contributed by NM, 30-Aug-1993.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
Ref | Expression |
---|---|
suceq |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 | . . 3 | |
2 | sneq 3571 | . . 3 | |
3 | 1, 2 | uneq12d 3262 | . 2 |
4 | df-suc 4331 | . 2 | |
5 | df-suc 4331 | . 2 | |
6 | 3, 4, 5 | 3eqtr4g 2215 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1335 cun 3100 csn 3560 csuc 4325 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-ext 2139 |
This theorem depends on definitions: df-bi 116 df-tru 1338 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-v 2714 df-un 3106 df-sn 3566 df-suc 4331 |
This theorem is referenced by: eqelsuc 4379 2ordpr 4482 onsucsssucexmid 4485 onsucelsucexmid 4488 ordsucunielexmid 4489 suc11g 4515 onsucuni2 4522 0elsucexmid 4523 ordpwsucexmid 4528 peano2 4553 findes 4561 nn0suc 4562 0elnn 4577 omsinds 4580 tfr1onlemsucaccv 6285 tfrcllemsucaccv 6298 tfrcl 6308 frecabcl 6343 frecsuc 6351 sucinc 6389 sucinc2 6390 oacl 6404 oav2 6407 oasuc 6408 oa1suc 6411 nna0r 6422 nnacom 6428 nnaass 6429 nnmsucr 6432 nnsucelsuc 6435 nnsucsssuc 6436 nnaword 6455 nnaordex 6471 phplem3g 6798 nneneq 6799 php5 6800 php5dom 6805 omp1eomlem 7032 omp1eom 7033 nnnninfeq 7065 nnnninfeq2 7066 indpi 7256 ennnfoneleminc 12123 ennnfonelemex 12126 bj-indsuc 13474 bj-bdfindes 13495 bj-nn0suc0 13496 bj-peano4 13501 bj-inf2vnlem1 13516 bj-nn0sucALT 13524 bj-findes 13527 nnsf 13548 nninfsellemdc 13553 nninfself 13556 nninfsellemeqinf 13559 nninfomni 13562 |
Copyright terms: Public domain | W3C validator |