ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  suceq Unicode version

Theorem suceq 4438
Description: Equality of successors. (Contributed by NM, 30-Aug-1993.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
Assertion
Ref Expression
suceq  |-  ( A  =  B  ->  suc  A  =  suc  B )

Proof of Theorem suceq
StepHypRef Expression
1 id 19 . . 3  |-  ( A  =  B  ->  A  =  B )
2 sneq 3634 . . 3  |-  ( A  =  B  ->  { A }  =  { B } )
31, 2uneq12d 3319 . 2  |-  ( A  =  B  ->  ( A  u.  { A } )  =  ( B  u.  { B } ) )
4 df-suc 4407 . 2  |-  suc  A  =  ( A  u.  { A } )
5 df-suc 4407 . 2  |-  suc  B  =  ( B  u.  { B } )
63, 4, 53eqtr4g 2254 1  |-  ( A  =  B  ->  suc  A  =  suc  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    u. cun 3155   {csn 3623   suc csuc 4401
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-un 3161  df-sn 3629  df-suc 4407
This theorem is referenced by:  eqelsuc  4455  2ordpr  4561  onsucsssucexmid  4564  onsucelsucexmid  4567  ordsucunielexmid  4568  suc11g  4594  onsucuni2  4601  0elsucexmid  4602  ordpwsucexmid  4607  peano2  4632  findes  4640  nn0suc  4641  0elnn  4656  omsinds  4659  tfr1onlemsucaccv  6408  tfrcllemsucaccv  6421  tfrcl  6431  frecabcl  6466  frecsuc  6474  sucinc  6512  sucinc2  6513  oacl  6527  oav2  6530  oasuc  6531  oa1suc  6534  nna0r  6545  nnacom  6551  nnaass  6552  nnmsucr  6555  nnsucelsuc  6558  nnsucsssuc  6559  nnaword  6578  nnaordex  6595  phplem3g  6926  nneneq  6927  php5  6928  php5dom  6933  omp1eomlem  7169  omp1eom  7170  nninfninc  7198  nnnninfeq  7203  nnnninfeq2  7204  nninfwlpoimlemg  7250  nninfwlpoimlemginf  7251  nninfwlpoim  7253  indpi  7426  ennnfoneleminc  12653  ennnfonelemex  12656  bj-indsuc  15658  bj-bdfindes  15679  bj-nn0suc0  15680  bj-peano4  15685  bj-inf2vnlem1  15700  bj-nn0sucALT  15708  bj-findes  15711  nnsf  15736  nninfsellemdc  15741  nninfself  15744  nninfsellemeqinf  15747  nninfomni  15750
  Copyright terms: Public domain W3C validator