![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > suceq | Unicode version |
Description: Equality of successors. (Contributed by NM, 30-Aug-1993.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
Ref | Expression |
---|---|
suceq |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | sneq 3605 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | uneq12d 3292 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | df-suc 4373 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
5 | df-suc 4373 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
6 | 3, 4, 5 | 3eqtr4g 2235 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-v 2741 df-un 3135 df-sn 3600 df-suc 4373 |
This theorem is referenced by: eqelsuc 4421 2ordpr 4525 onsucsssucexmid 4528 onsucelsucexmid 4531 ordsucunielexmid 4532 suc11g 4558 onsucuni2 4565 0elsucexmid 4566 ordpwsucexmid 4571 peano2 4596 findes 4604 nn0suc 4605 0elnn 4620 omsinds 4623 tfr1onlemsucaccv 6344 tfrcllemsucaccv 6357 tfrcl 6367 frecabcl 6402 frecsuc 6410 sucinc 6448 sucinc2 6449 oacl 6463 oav2 6466 oasuc 6467 oa1suc 6470 nna0r 6481 nnacom 6487 nnaass 6488 nnmsucr 6491 nnsucelsuc 6494 nnsucsssuc 6495 nnaword 6514 nnaordex 6531 phplem3g 6858 nneneq 6859 php5 6860 php5dom 6865 omp1eomlem 7095 omp1eom 7096 nnnninfeq 7128 nnnninfeq2 7129 nninfwlpoimlemg 7175 nninfwlpoimlemginf 7176 nninfwlpoim 7178 indpi 7343 ennnfoneleminc 12414 ennnfonelemex 12417 bj-indsuc 14719 bj-bdfindes 14740 bj-nn0suc0 14741 bj-peano4 14746 bj-inf2vnlem1 14761 bj-nn0sucALT 14769 bj-findes 14772 nnsf 14793 nninfsellemdc 14798 nninfself 14801 nninfsellemeqinf 14804 nninfomni 14807 |
Copyright terms: Public domain | W3C validator |