| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > eqeq12i | Unicode version | ||
| Description: A useful inference for substituting definitions into an equality. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 25-May-2011.) | 
| Ref | Expression | 
|---|---|
| eqeq12i.1 | 
 | 
| eqeq12i.2 | 
 | 
| Ref | Expression | 
|---|---|
| eqeq12i | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eqeq12i.1 | 
. 2
 | |
| 2 | eqeq12i.2 | 
. 2
 | |
| 3 | eqeq12 2209 | 
. 2
 | |
| 4 | 1, 2, 3 | mp2an 426 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-4 1524 ax-17 1540 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-cleq 2189 | 
| This theorem is referenced by: rabbi 2675 sbceqg 3100 preqr2g 3797 preqr2 3799 otth 4275 rncoeq 4939 eqfnov 6029 mpo2eqb 6032 f1o2ndf1 6286 ecopovsym 6690 sq11i 10721 dvmptfsum 14961 pwle2 15643 | 
| Copyright terms: Public domain | W3C validator |