ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqeq12i Unicode version

Theorem eqeq12i 2219
Description: A useful inference for substituting definitions into an equality. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 25-May-2011.)
Hypotheses
Ref Expression
eqeq12i.1  |-  A  =  B
eqeq12i.2  |-  C  =  D
Assertion
Ref Expression
eqeq12i  |-  ( A  =  C  <->  B  =  D )

Proof of Theorem eqeq12i
StepHypRef Expression
1 eqeq12i.1 . 2  |-  A  =  B
2 eqeq12i.2 . 2  |-  C  =  D
3 eqeq12 2218 . 2  |-  ( ( A  =  B  /\  C  =  D )  ->  ( A  =  C  <-> 
B  =  D ) )
41, 2, 3mp2an 426 1  |-  ( A  =  C  <->  B  =  D )
Colors of variables: wff set class
Syntax hints:    <-> wb 105    = wceq 1373
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1470  ax-gen 1472  ax-4 1533  ax-17 1549  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-cleq 2198
This theorem is referenced by:  rabbi  2684  sbceqg  3109  preqr2g  3808  preqr2  3810  otth  4286  rncoeq  4952  eqfnov  6052  mpo2eqb  6055  f1o2ndf1  6314  ecopovsym  6718  sq11i  10774  dvmptfsum  15197  pwle2  15935
  Copyright terms: Public domain W3C validator