| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqeq12i | Unicode version | ||
| Description: A useful inference for substituting definitions into an equality. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
| Ref | Expression |
|---|---|
| eqeq12i.1 |
|
| eqeq12i.2 |
|
| Ref | Expression |
|---|---|
| eqeq12i |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq12i.1 |
. 2
| |
| 2 | eqeq12i.2 |
. 2
| |
| 3 | eqeq12 2220 |
. 2
| |
| 4 | 1, 2, 3 | mp2an 426 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-4 1534 ax-17 1550 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-cleq 2200 |
| This theorem is referenced by: rabbi 2686 sbceqg 3117 preqr2g 3821 preqr2 3823 otth 4304 rncoeq 4971 eqfnov 6075 mpo2eqb 6078 f1o2ndf1 6337 ecopovsym 6741 sq11i 10811 dvmptfsum 15312 pwle2 16137 |
| Copyright terms: Public domain | W3C validator |