ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqeq12i Unicode version

Theorem eqeq12i 2179
Description: A useful inference for substituting definitions into an equality. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 25-May-2011.)
Hypotheses
Ref Expression
eqeq12i.1  |-  A  =  B
eqeq12i.2  |-  C  =  D
Assertion
Ref Expression
eqeq12i  |-  ( A  =  C  <->  B  =  D )

Proof of Theorem eqeq12i
StepHypRef Expression
1 eqeq12i.1 . 2  |-  A  =  B
2 eqeq12i.2 . 2  |-  C  =  D
3 eqeq12 2178 . 2  |-  ( ( A  =  B  /\  C  =  D )  ->  ( A  =  C  <-> 
B  =  D ) )
41, 2, 3mp2an 423 1  |-  ( A  =  C  <->  B  =  D )
Colors of variables: wff set class
Syntax hints:    <-> wb 104    = wceq 1343
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-gen 1437  ax-4 1498  ax-17 1514  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-cleq 2158
This theorem is referenced by:  rabbi  2643  sbceqg  3061  preqr2g  3747  preqr2  3749  otth  4220  rncoeq  4877  eqfnov  5948  mpo2eqb  5951  f1o2ndf1  6196  ecopovsym  6597  sq11i  10544  pwle2  13878
  Copyright terms: Public domain W3C validator