| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqeq12 | Unicode version | ||
| Description: Equality relationship among 4 classes. (Contributed by NM, 3-Aug-1994.) |
| Ref | Expression |
|---|---|
| eqeq12 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq1 2214 |
. 2
| |
| 2 | eqeq2 2217 |
. 2
| |
| 3 | 1, 2 | sylan9bb 462 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-4 1534 ax-17 1550 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-cleq 2200 |
| This theorem is referenced by: eqeq12i 2221 eqeq12d 2222 eqeqan12d 2223 funopg 5324 tfri3 6476 th3qlem1 6747 xpdom2 6951 difinfsnlem 7227 difinfsn 7228 xrlttri3 9954 bcn1 10940 summodc 11809 prodmodc 12004 ringinvnz1ne0 13926 |
| Copyright terms: Public domain | W3C validator |