Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eqeq12 | Unicode version |
Description: Equality relationship among 4 classes. (Contributed by NM, 3-Aug-1994.) |
Ref | Expression |
---|---|
eqeq12 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq1 2171 | . 2 | |
2 | eqeq2 2174 | . 2 | |
3 | 1, 2 | sylan9bb 458 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1342 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1434 ax-gen 1436 ax-4 1497 ax-17 1513 ax-ext 2146 |
This theorem depends on definitions: df-bi 116 df-cleq 2157 |
This theorem is referenced by: eqeq12i 2178 eqeq12d 2179 eqeqan12d 2180 funopg 5217 tfri3 6327 th3qlem1 6595 xpdom2 6789 difinfsnlem 7056 difinfsn 7057 xrlttri3 9725 bcn1 10661 summodc 11311 prodmodc 11506 |
Copyright terms: Public domain | W3C validator |