ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqeq12 Unicode version

Theorem eqeq12 2190
Description: Equality relationship among 4 classes. (Contributed by NM, 3-Aug-1994.)
Assertion
Ref Expression
eqeq12  |-  ( ( A  =  B  /\  C  =  D )  ->  ( A  =  C  <-> 
B  =  D ) )

Proof of Theorem eqeq12
StepHypRef Expression
1 eqeq1 2184 . 2  |-  ( A  =  B  ->  ( A  =  C  <->  B  =  C ) )
2 eqeq2 2187 . 2  |-  ( C  =  D  ->  ( B  =  C  <->  B  =  D ) )
31, 2sylan9bb 462 1  |-  ( ( A  =  B  /\  C  =  D )  ->  ( A  =  C  <-> 
B  =  D ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1353
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1447  ax-gen 1449  ax-4 1510  ax-17 1526  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-cleq 2170
This theorem is referenced by:  eqeq12i  2191  eqeq12d  2192  eqeqan12d  2193  funopg  5252  tfri3  6370  th3qlem1  6639  xpdom2  6833  difinfsnlem  7100  difinfsn  7101  xrlttri3  9799  bcn1  10740  summodc  11393  prodmodc  11588  ringinvnz1ne0  13231
  Copyright terms: Public domain W3C validator