ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqeq12 Unicode version

Theorem eqeq12 2242
Description: Equality relationship among 4 classes. (Contributed by NM, 3-Aug-1994.)
Assertion
Ref Expression
eqeq12  |-  ( ( A  =  B  /\  C  =  D )  ->  ( A  =  C  <-> 
B  =  D ) )

Proof of Theorem eqeq12
StepHypRef Expression
1 eqeq1 2236 . 2  |-  ( A  =  B  ->  ( A  =  C  <->  B  =  C ) )
2 eqeq2 2239 . 2  |-  ( C  =  D  ->  ( B  =  C  <->  B  =  D ) )
31, 2sylan9bb 462 1  |-  ( ( A  =  B  /\  C  =  D )  ->  ( A  =  C  <-> 
B  =  D ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1493  ax-gen 1495  ax-4 1556  ax-17 1572  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-cleq 2222
This theorem is referenced by:  eqeq12i  2243  eqeq12d  2244  eqeqan12d  2245  funopg  5352  riotaeqimp  5979  tfri3  6513  th3qlem1  6784  xpdom2  6990  difinfsnlem  7266  difinfsn  7267  xrlttri3  9993  bcn1  10980  summodc  11894  prodmodc  12089  ringinvnz1ne0  14012
  Copyright terms: Public domain W3C validator