ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqeq12 Unicode version

Theorem eqeq12 2183
Description: Equality relationship among 4 classes. (Contributed by NM, 3-Aug-1994.)
Assertion
Ref Expression
eqeq12  |-  ( ( A  =  B  /\  C  =  D )  ->  ( A  =  C  <-> 
B  =  D ) )

Proof of Theorem eqeq12
StepHypRef Expression
1 eqeq1 2177 . 2  |-  ( A  =  B  ->  ( A  =  C  <->  B  =  C ) )
2 eqeq2 2180 . 2  |-  ( C  =  D  ->  ( B  =  C  <->  B  =  D ) )
31, 2sylan9bb 459 1  |-  ( ( A  =  B  /\  C  =  D )  ->  ( A  =  C  <-> 
B  =  D ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1348
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1440  ax-gen 1442  ax-4 1503  ax-17 1519  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-cleq 2163
This theorem is referenced by:  eqeq12i  2184  eqeq12d  2185  eqeqan12d  2186  funopg  5232  tfri3  6346  th3qlem1  6615  xpdom2  6809  difinfsnlem  7076  difinfsn  7077  xrlttri3  9754  bcn1  10692  summodc  11346  prodmodc  11541
  Copyright terms: Public domain W3C validator