| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqeq12 | Unicode version | ||
| Description: Equality relationship among 4 classes. (Contributed by NM, 3-Aug-1994.) |
| Ref | Expression |
|---|---|
| eqeq12 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq1 2236 |
. 2
| |
| 2 | eqeq2 2239 |
. 2
| |
| 3 | 1, 2 | sylan9bb 462 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 ax-4 1556 ax-17 1572 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-cleq 2222 |
| This theorem is referenced by: eqeq12i 2243 eqeq12d 2244 eqeqan12d 2245 funopg 5352 riotaeqimp 5979 tfri3 6513 th3qlem1 6784 xpdom2 6990 difinfsnlem 7266 difinfsn 7267 xrlttri3 9993 bcn1 10980 summodc 11894 prodmodc 12089 ringinvnz1ne0 14012 |
| Copyright terms: Public domain | W3C validator |