Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ecopovsym | Unicode version |
Description: Assuming the operation is commutative, show that the relation , specified by the first hypothesis, is symmetric. (Contributed by NM, 27-Aug-1995.) (Revised by Mario Carneiro, 26-Apr-2015.) |
Ref | Expression |
---|---|
ecopopr.1 | |
ecopopr.com |
Ref | Expression |
---|---|
ecopovsym |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ecopopr.1 | . . . . 5 | |
2 | opabssxp 4694 | . . . . 5 | |
3 | 1, 2 | eqsstri 3185 | . . . 4 |
4 | 3 | brel 4672 | . . 3 |
5 | eqid 2175 | . . . 4 | |
6 | breq1 4001 | . . . . 5 | |
7 | breq2 4002 | . . . . 5 | |
8 | 6, 7 | bibi12d 235 | . . . 4 |
9 | breq2 4002 | . . . . 5 | |
10 | breq1 4001 | . . . . 5 | |
11 | 9, 10 | bibi12d 235 | . . . 4 |
12 | 1 | ecopoveq 6620 | . . . . . 6 |
13 | vex 2738 | . . . . . . . . 9 | |
14 | vex 2738 | . . . . . . . . 9 | |
15 | ecopopr.com | . . . . . . . . 9 | |
16 | 13, 14, 15 | caovcom 6022 | . . . . . . . 8 |
17 | vex 2738 | . . . . . . . . 9 | |
18 | vex 2738 | . . . . . . . . 9 | |
19 | 17, 18, 15 | caovcom 6022 | . . . . . . . 8 |
20 | 16, 19 | eqeq12i 2189 | . . . . . . 7 |
21 | eqcom 2177 | . . . . . . 7 | |
22 | 20, 21 | bitri 184 | . . . . . 6 |
23 | 12, 22 | bitrdi 196 | . . . . 5 |
24 | 1 | ecopoveq 6620 | . . . . . 6 |
25 | 24 | ancoms 268 | . . . . 5 |
26 | 23, 25 | bitr4d 191 | . . . 4 |
27 | 5, 8, 11, 26 | 2optocl 4697 | . . 3 |
28 | 4, 27 | syl 14 | . 2 |
29 | 28 | ibi 176 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 104 wb 105 wceq 1353 wex 1490 wcel 2146 cop 3592 class class class wbr 3998 copab 4058 cxp 4618 (class class class)co 5865 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ral 2458 df-rex 2459 df-v 2737 df-un 3131 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-br 3999 df-opab 4060 df-xp 4626 df-iota 5170 df-fv 5216 df-ov 5868 |
This theorem is referenced by: ecopover 6623 |
Copyright terms: Public domain | W3C validator |