| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > ecopovsym | Unicode version | ||
| Description: Assuming the operation
 | 
| Ref | Expression | 
|---|---|
| ecopopr.1 | 
 | 
| ecopopr.com | 
 | 
| Ref | Expression | 
|---|---|
| ecopovsym | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ecopopr.1 | 
. . . . 5
 | |
| 2 | opabssxp 4737 | 
. . . . 5
 | |
| 3 | 1, 2 | eqsstri 3215 | 
. . . 4
 | 
| 4 | 3 | brel 4715 | 
. . 3
 | 
| 5 | eqid 2196 | 
. . . 4
 | |
| 6 | breq1 4036 | 
. . . . 5
 | |
| 7 | breq2 4037 | 
. . . . 5
 | |
| 8 | 6, 7 | bibi12d 235 | 
. . . 4
 | 
| 9 | breq2 4037 | 
. . . . 5
 | |
| 10 | breq1 4036 | 
. . . . 5
 | |
| 11 | 9, 10 | bibi12d 235 | 
. . . 4
 | 
| 12 | 1 | ecopoveq 6689 | 
. . . . . 6
 | 
| 13 | vex 2766 | 
. . . . . . . . 9
 | |
| 14 | vex 2766 | 
. . . . . . . . 9
 | |
| 15 | ecopopr.com | 
. . . . . . . . 9
 | |
| 16 | 13, 14, 15 | caovcom 6081 | 
. . . . . . . 8
 | 
| 17 | vex 2766 | 
. . . . . . . . 9
 | |
| 18 | vex 2766 | 
. . . . . . . . 9
 | |
| 19 | 17, 18, 15 | caovcom 6081 | 
. . . . . . . 8
 | 
| 20 | 16, 19 | eqeq12i 2210 | 
. . . . . . 7
 | 
| 21 | eqcom 2198 | 
. . . . . . 7
 | |
| 22 | 20, 21 | bitri 184 | 
. . . . . 6
 | 
| 23 | 12, 22 | bitrdi 196 | 
. . . . 5
 | 
| 24 | 1 | ecopoveq 6689 | 
. . . . . 6
 | 
| 25 | 24 | ancoms 268 | 
. . . . 5
 | 
| 26 | 23, 25 | bitr4d 191 | 
. . . 4
 | 
| 27 | 5, 8, 11, 26 | 2optocl 4740 | 
. . 3
 | 
| 28 | 4, 27 | syl 14 | 
. 2
 | 
| 29 | 28 | ibi 176 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-xp 4669 df-iota 5219 df-fv 5266 df-ov 5925 | 
| This theorem is referenced by: ecopover 6692 | 
| Copyright terms: Public domain | W3C validator |