| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ecopovsym | Unicode version | ||
| Description: Assuming the operation
|
| Ref | Expression |
|---|---|
| ecopopr.1 |
|
| ecopopr.com |
|
| Ref | Expression |
|---|---|
| ecopovsym |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ecopopr.1 |
. . . . 5
| |
| 2 | opabssxp 4767 |
. . . . 5
| |
| 3 | 1, 2 | eqsstri 3233 |
. . . 4
|
| 4 | 3 | brel 4745 |
. . 3
|
| 5 | eqid 2207 |
. . . 4
| |
| 6 | breq1 4062 |
. . . . 5
| |
| 7 | breq2 4063 |
. . . . 5
| |
| 8 | 6, 7 | bibi12d 235 |
. . . 4
|
| 9 | breq2 4063 |
. . . . 5
| |
| 10 | breq1 4062 |
. . . . 5
| |
| 11 | 9, 10 | bibi12d 235 |
. . . 4
|
| 12 | 1 | ecopoveq 6740 |
. . . . . 6
|
| 13 | vex 2779 |
. . . . . . . . 9
| |
| 14 | vex 2779 |
. . . . . . . . 9
| |
| 15 | ecopopr.com |
. . . . . . . . 9
| |
| 16 | 13, 14, 15 | caovcom 6127 |
. . . . . . . 8
|
| 17 | vex 2779 |
. . . . . . . . 9
| |
| 18 | vex 2779 |
. . . . . . . . 9
| |
| 19 | 17, 18, 15 | caovcom 6127 |
. . . . . . . 8
|
| 20 | 16, 19 | eqeq12i 2221 |
. . . . . . 7
|
| 21 | eqcom 2209 |
. . . . . . 7
| |
| 22 | 20, 21 | bitri 184 |
. . . . . 6
|
| 23 | 12, 22 | bitrdi 196 |
. . . . 5
|
| 24 | 1 | ecopoveq 6740 |
. . . . . 6
|
| 25 | 24 | ancoms 268 |
. . . . 5
|
| 26 | 23, 25 | bitr4d 191 |
. . . 4
|
| 27 | 5, 8, 11, 26 | 2optocl 4770 |
. . 3
|
| 28 | 4, 27 | syl 14 |
. 2
|
| 29 | 28 | ibi 176 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-v 2778 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-opab 4122 df-xp 4699 df-iota 5251 df-fv 5298 df-ov 5970 |
| This theorem is referenced by: ecopover 6743 |
| Copyright terms: Public domain | W3C validator |