ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  preqr2 Unicode version

Theorem preqr2 3635
Description: Reverse equality lemma for unordered pairs. If two unordered pairs have the same first element, the second elements are equal. (Contributed by NM, 5-Aug-1993.)
Hypotheses
Ref Expression
preqr2.1  |-  A  e. 
_V
preqr2.2  |-  B  e. 
_V
Assertion
Ref Expression
preqr2  |-  ( { C ,  A }  =  { C ,  B }  ->  A  =  B )

Proof of Theorem preqr2
StepHypRef Expression
1 prcom 3538 . . 3  |-  { C ,  A }  =  { A ,  C }
2 prcom 3538 . . 3  |-  { C ,  B }  =  { B ,  C }
31, 2eqeq12i 2108 . 2  |-  ( { C ,  A }  =  { C ,  B } 
<->  { A ,  C }  =  { B ,  C } )
4 preqr2.1 . . 3  |-  A  e. 
_V
5 preqr2.2 . . 3  |-  B  e. 
_V
64, 5preqr1 3634 . 2  |-  ( { A ,  C }  =  { B ,  C }  ->  A  =  B )
73, 6sylbi 120 1  |-  ( { C ,  A }  =  { C ,  B }  ->  A  =  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1296    e. wcel 1445   _Vcvv 2633   {cpr 3467
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 668  ax-5 1388  ax-7 1389  ax-gen 1390  ax-ie1 1434  ax-ie2 1435  ax-8 1447  ax-10 1448  ax-11 1449  ax-i12 1450  ax-bndl 1451  ax-4 1452  ax-17 1471  ax-i9 1475  ax-ial 1479  ax-i5r 1480  ax-ext 2077
This theorem depends on definitions:  df-bi 116  df-tru 1299  df-nf 1402  df-sb 1700  df-clab 2082  df-cleq 2088  df-clel 2091  df-nfc 2224  df-v 2635  df-un 3017  df-sn 3472  df-pr 3473
This theorem is referenced by:  preq12b  3636  opth  4088  opthreg  4400
  Copyright terms: Public domain W3C validator