ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqfnov Unicode version

Theorem eqfnov 6029
Description: Equality of two operations is determined by their values. (Contributed by NM, 1-Sep-2005.)
Assertion
Ref Expression
eqfnov  |-  ( ( F  Fn  ( A  X.  B )  /\  G  Fn  ( C  X.  D ) )  -> 
( F  =  G  <-> 
( ( A  X.  B )  =  ( C  X.  D )  /\  A. x  e.  A  A. y  e.  B  ( x F y )  =  ( x G y ) ) ) )
Distinct variable groups:    x, y, A   
x, B, y    x, F, y    x, G, y
Allowed substitution hints:    C( x, y)    D( x, y)

Proof of Theorem eqfnov
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 eqfnfv2 5660 . 2  |-  ( ( F  Fn  ( A  X.  B )  /\  G  Fn  ( C  X.  D ) )  -> 
( F  =  G  <-> 
( ( A  X.  B )  =  ( C  X.  D )  /\  A. z  e.  ( A  X.  B
) ( F `  z )  =  ( G `  z ) ) ) )
2 fveq2 5558 . . . . . 6  |-  ( z  =  <. x ,  y
>.  ->  ( F `  z )  =  ( F `  <. x ,  y >. )
)
3 fveq2 5558 . . . . . 6  |-  ( z  =  <. x ,  y
>.  ->  ( G `  z )  =  ( G `  <. x ,  y >. )
)
42, 3eqeq12d 2211 . . . . 5  |-  ( z  =  <. x ,  y
>.  ->  ( ( F `
 z )  =  ( G `  z
)  <->  ( F `  <. x ,  y >.
)  =  ( G `
 <. x ,  y
>. ) ) )
5 df-ov 5925 . . . . . 6  |-  ( x F y )  =  ( F `  <. x ,  y >. )
6 df-ov 5925 . . . . . 6  |-  ( x G y )  =  ( G `  <. x ,  y >. )
75, 6eqeq12i 2210 . . . . 5  |-  ( ( x F y )  =  ( x G y )  <->  ( F `  <. x ,  y
>. )  =  ( G `  <. x ,  y >. ) )
84, 7bitr4di 198 . . . 4  |-  ( z  =  <. x ,  y
>.  ->  ( ( F `
 z )  =  ( G `  z
)  <->  ( x F y )  =  ( x G y ) ) )
98ralxp 4809 . . 3  |-  ( A. z  e.  ( A  X.  B ) ( F `
 z )  =  ( G `  z
)  <->  A. x  e.  A  A. y  e.  B  ( x F y )  =  ( x G y ) )
109anbi2i 457 . 2  |-  ( ( ( A  X.  B
)  =  ( C  X.  D )  /\  A. z  e.  ( A  X.  B ) ( F `  z )  =  ( G `  z ) )  <->  ( ( A  X.  B )  =  ( C  X.  D
)  /\  A. x  e.  A  A. y  e.  B  ( x F y )  =  ( x G y ) ) )
111, 10bitrdi 196 1  |-  ( ( F  Fn  ( A  X.  B )  /\  G  Fn  ( C  X.  D ) )  -> 
( F  =  G  <-> 
( ( A  X.  B )  =  ( C  X.  D )  /\  A. x  e.  A  A. y  e.  B  ( x F y )  =  ( x G y ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364   A.wral 2475   <.cop 3625    X. cxp 4661    Fn wfn 5253   ` cfv 5258  (class class class)co 5922
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-sbc 2990  df-csb 3085  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-iota 5219  df-fun 5260  df-fn 5261  df-fv 5266  df-ov 5925
This theorem is referenced by:  eqfnov2  6030
  Copyright terms: Public domain W3C validator