ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqfnov Unicode version

Theorem eqfnov 5956
Description: Equality of two operations is determined by their values. (Contributed by NM, 1-Sep-2005.)
Assertion
Ref Expression
eqfnov  |-  ( ( F  Fn  ( A  X.  B )  /\  G  Fn  ( C  X.  D ) )  -> 
( F  =  G  <-> 
( ( A  X.  B )  =  ( C  X.  D )  /\  A. x  e.  A  A. y  e.  B  ( x F y )  =  ( x G y ) ) ) )
Distinct variable groups:    x, y, A   
x, B, y    x, F, y    x, G, y
Allowed substitution hints:    C( x, y)    D( x, y)

Proof of Theorem eqfnov
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 eqfnfv2 5592 . 2  |-  ( ( F  Fn  ( A  X.  B )  /\  G  Fn  ( C  X.  D ) )  -> 
( F  =  G  <-> 
( ( A  X.  B )  =  ( C  X.  D )  /\  A. z  e.  ( A  X.  B
) ( F `  z )  =  ( G `  z ) ) ) )
2 fveq2 5494 . . . . . 6  |-  ( z  =  <. x ,  y
>.  ->  ( F `  z )  =  ( F `  <. x ,  y >. )
)
3 fveq2 5494 . . . . . 6  |-  ( z  =  <. x ,  y
>.  ->  ( G `  z )  =  ( G `  <. x ,  y >. )
)
42, 3eqeq12d 2185 . . . . 5  |-  ( z  =  <. x ,  y
>.  ->  ( ( F `
 z )  =  ( G `  z
)  <->  ( F `  <. x ,  y >.
)  =  ( G `
 <. x ,  y
>. ) ) )
5 df-ov 5853 . . . . . 6  |-  ( x F y )  =  ( F `  <. x ,  y >. )
6 df-ov 5853 . . . . . 6  |-  ( x G y )  =  ( G `  <. x ,  y >. )
75, 6eqeq12i 2184 . . . . 5  |-  ( ( x F y )  =  ( x G y )  <->  ( F `  <. x ,  y
>. )  =  ( G `  <. x ,  y >. ) )
84, 7bitr4di 197 . . . 4  |-  ( z  =  <. x ,  y
>.  ->  ( ( F `
 z )  =  ( G `  z
)  <->  ( x F y )  =  ( x G y ) ) )
98ralxp 4752 . . 3  |-  ( A. z  e.  ( A  X.  B ) ( F `
 z )  =  ( G `  z
)  <->  A. x  e.  A  A. y  e.  B  ( x F y )  =  ( x G y ) )
109anbi2i 454 . 2  |-  ( ( ( A  X.  B
)  =  ( C  X.  D )  /\  A. z  e.  ( A  X.  B ) ( F `  z )  =  ( G `  z ) )  <->  ( ( A  X.  B )  =  ( C  X.  D
)  /\  A. x  e.  A  A. y  e.  B  ( x F y )  =  ( x G y ) ) )
111, 10bitrdi 195 1  |-  ( ( F  Fn  ( A  X.  B )  /\  G  Fn  ( C  X.  D ) )  -> 
( F  =  G  <-> 
( ( A  X.  B )  =  ( C  X.  D )  /\  A. x  e.  A  A. y  e.  B  ( x F y )  =  ( x G y ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1348   A.wral 2448   <.cop 3584    X. cxp 4607    Fn wfn 5191   ` cfv 5196  (class class class)co 5850
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4105  ax-pow 4158  ax-pr 4192
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-sbc 2956  df-csb 3050  df-un 3125  df-in 3127  df-ss 3134  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3795  df-iun 3873  df-br 3988  df-opab 4049  df-mpt 4050  df-id 4276  df-xp 4615  df-rel 4616  df-cnv 4617  df-co 4618  df-dm 4619  df-iota 5158  df-fun 5198  df-fn 5199  df-fv 5204  df-ov 5853
This theorem is referenced by:  eqfnov2  5957
  Copyright terms: Public domain W3C validator