ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mpo2eqb Unicode version

Theorem mpo2eqb 5887
Description: Bidirectional equality theorem for a mapping abstraction. Equivalent to eqfnov2 5885. (Contributed by Mario Carneiro, 4-Jan-2017.)
Assertion
Ref Expression
mpo2eqb  |-  ( A. x  e.  A  A. y  e.  B  C  e.  V  ->  ( ( x  e.  A , 
y  e.  B  |->  C )  =  ( x  e.  A ,  y  e.  B  |->  D )  <->  A. x  e.  A  A. y  e.  B  C  =  D )
)
Distinct variable groups:    x, y, A   
y, B
Allowed substitution hints:    B( x)    C( x, y)    D( x, y)    V( x, y)

Proof of Theorem mpo2eqb
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 pm13.183 2825 . . . . . 6  |-  ( C  e.  V  ->  ( C  =  D  <->  A. z
( z  =  C  <-> 
z  =  D ) ) )
21ralimi 2498 . . . . 5  |-  ( A. y  e.  B  C  e.  V  ->  A. y  e.  B  ( C  =  D  <->  A. z ( z  =  C  <->  z  =  D ) ) )
3 ralbi 2567 . . . . 5  |-  ( A. y  e.  B  ( C  =  D  <->  A. z
( z  =  C  <-> 
z  =  D ) )  ->  ( A. y  e.  B  C  =  D  <->  A. y  e.  B  A. z ( z  =  C  <->  z  =  D ) ) )
42, 3syl 14 . . . 4  |-  ( A. y  e.  B  C  e.  V  ->  ( A. y  e.  B  C  =  D  <->  A. y  e.  B  A. z ( z  =  C  <->  z  =  D ) ) )
54ralimi 2498 . . 3  |-  ( A. x  e.  A  A. y  e.  B  C  e.  V  ->  A. x  e.  A  ( A. y  e.  B  C  =  D  <->  A. y  e.  B  A. z ( z  =  C  <->  z  =  D ) ) )
6 ralbi 2567 . . 3  |-  ( A. x  e.  A  ( A. y  e.  B  C  =  D  <->  A. y  e.  B  A. z
( z  =  C  <-> 
z  =  D ) )  ->  ( A. x  e.  A  A. y  e.  B  C  =  D  <->  A. x  e.  A  A. y  e.  B  A. z ( z  =  C  <->  z  =  D ) ) )
75, 6syl 14 . 2  |-  ( A. x  e.  A  A. y  e.  B  C  e.  V  ->  ( A. x  e.  A  A. y  e.  B  C  =  D  <->  A. x  e.  A  A. y  e.  B  A. z ( z  =  C  <->  z  =  D ) ) )
8 df-mpo 5786 . . . 4  |-  ( x  e.  A ,  y  e.  B  |->  C )  =  { <. <. x ,  y >. ,  z
>.  |  ( (
x  e.  A  /\  y  e.  B )  /\  z  =  C
) }
9 df-mpo 5786 . . . 4  |-  ( x  e.  A ,  y  e.  B  |->  D )  =  { <. <. x ,  y >. ,  z
>.  |  ( (
x  e.  A  /\  y  e.  B )  /\  z  =  D
) }
108, 9eqeq12i 2154 . . 3  |-  ( ( x  e.  A , 
y  e.  B  |->  C )  =  ( x  e.  A ,  y  e.  B  |->  D )  <->  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  A  /\  y  e.  B )  /\  z  =  C ) }  =  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  A  /\  y  e.  B )  /\  z  =  D ) } )
11 eqoprab2b 5836 . . 3  |-  ( {
<. <. x ,  y
>. ,  z >.  |  ( ( x  e.  A  /\  y  e.  B )  /\  z  =  C ) }  =  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  A  /\  y  e.  B )  /\  z  =  D ) }  <->  A. x A. y A. z ( ( ( x  e.  A  /\  y  e.  B )  /\  z  =  C )  <->  ( (
x  e.  A  /\  y  e.  B )  /\  z  =  D
) ) )
12 pm5.32 449 . . . . . . 7  |-  ( ( ( x  e.  A  /\  y  e.  B
)  ->  ( z  =  C  <->  z  =  D ) )  <->  ( (
( x  e.  A  /\  y  e.  B
)  /\  z  =  C )  <->  ( (
x  e.  A  /\  y  e.  B )  /\  z  =  D
) ) )
1312albii 1447 . . . . . 6  |-  ( A. z ( ( x  e.  A  /\  y  e.  B )  ->  (
z  =  C  <->  z  =  D ) )  <->  A. z
( ( ( x  e.  A  /\  y  e.  B )  /\  z  =  C )  <->  ( (
x  e.  A  /\  y  e.  B )  /\  z  =  D
) ) )
14 19.21v 1846 . . . . . 6  |-  ( A. z ( ( x  e.  A  /\  y  e.  B )  ->  (
z  =  C  <->  z  =  D ) )  <->  ( (
x  e.  A  /\  y  e.  B )  ->  A. z ( z  =  C  <->  z  =  D ) ) )
1513, 14bitr3i 185 . . . . 5  |-  ( A. z ( ( ( x  e.  A  /\  y  e.  B )  /\  z  =  C
)  <->  ( ( x  e.  A  /\  y  e.  B )  /\  z  =  D ) )  <->  ( (
x  e.  A  /\  y  e.  B )  ->  A. z ( z  =  C  <->  z  =  D ) ) )
16152albii 1448 . . . 4  |-  ( A. x A. y A. z
( ( ( x  e.  A  /\  y  e.  B )  /\  z  =  C )  <->  ( (
x  e.  A  /\  y  e.  B )  /\  z  =  D
) )  <->  A. x A. y ( ( x  e.  A  /\  y  e.  B )  ->  A. z
( z  =  C  <-> 
z  =  D ) ) )
17 r2al 2457 . . . 4  |-  ( A. x  e.  A  A. y  e.  B  A. z ( z  =  C  <->  z  =  D )  <->  A. x A. y
( ( x  e.  A  /\  y  e.  B )  ->  A. z
( z  =  C  <-> 
z  =  D ) ) )
1816, 17bitr4i 186 . . 3  |-  ( A. x A. y A. z
( ( ( x  e.  A  /\  y  e.  B )  /\  z  =  C )  <->  ( (
x  e.  A  /\  y  e.  B )  /\  z  =  D
) )  <->  A. x  e.  A  A. y  e.  B  A. z
( z  =  C  <-> 
z  =  D ) )
1910, 11, 183bitri 205 . 2  |-  ( ( x  e.  A , 
y  e.  B  |->  C )  =  ( x  e.  A ,  y  e.  B  |->  D )  <->  A. x  e.  A  A. y  e.  B  A. z ( z  =  C  <->  z  =  D ) )
207, 19syl6rbbr 198 1  |-  ( A. x  e.  A  A. y  e.  B  C  e.  V  ->  ( ( x  e.  A , 
y  e.  B  |->  C )  =  ( x  e.  A ,  y  e.  B  |->  D )  <->  A. x  e.  A  A. y  e.  B  C  =  D )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104   A.wal 1330    = wceq 1332    e. wcel 1481   A.wral 2417   {coprab 5782    e. cmpo 5783
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4053  ax-pow 4105  ax-pr 4138  ax-setind 4459
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-ral 2422  df-v 2691  df-dif 3077  df-un 3079  df-in 3081  df-ss 3088  df-pw 3516  df-sn 3537  df-pr 3538  df-op 3540  df-oprab 5785  df-mpo 5786
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator