Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mpo2eqb | Unicode version |
Description: Bidirectional equality theorem for a mapping abstraction. Equivalent to eqfnov2 5949. (Contributed by Mario Carneiro, 4-Jan-2017.) |
Ref | Expression |
---|---|
mpo2eqb |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-mpo 5847 | . . . 4 | |
2 | df-mpo 5847 | . . . 4 | |
3 | 1, 2 | eqeq12i 2179 | . . 3 |
4 | eqoprab2b 5900 | . . 3 | |
5 | pm5.32 449 | . . . . . . 7 | |
6 | 5 | albii 1458 | . . . . . 6 |
7 | 19.21v 1861 | . . . . . 6 | |
8 | 6, 7 | bitr3i 185 | . . . . 5 |
9 | 8 | 2albii 1459 | . . . 4 |
10 | r2al 2485 | . . . 4 | |
11 | 9, 10 | bitr4i 186 | . . 3 |
12 | 3, 4, 11 | 3bitri 205 | . 2 |
13 | pm13.183 2864 | . . . . . 6 | |
14 | 13 | ralimi 2529 | . . . . 5 |
15 | ralbi 2598 | . . . . 5 | |
16 | 14, 15 | syl 14 | . . . 4 |
17 | 16 | ralimi 2529 | . . 3 |
18 | ralbi 2598 | . . 3 | |
19 | 17, 18 | syl 14 | . 2 |
20 | 12, 19 | bitr4id 198 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wal 1341 wceq 1343 wcel 2136 wral 2444 coprab 5843 cmpo 5844 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-setind 4514 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-v 2728 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-oprab 5846 df-mpo 5847 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |