| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpo2eqb | Unicode version | ||
| Description: Bidirectional equality theorem for a mapping abstraction. Equivalent to eqfnov2 6060. (Contributed by Mario Carneiro, 4-Jan-2017.) |
| Ref | Expression |
|---|---|
| mpo2eqb |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-mpo 5956 |
. . . 4
| |
| 2 | df-mpo 5956 |
. . . 4
| |
| 3 | 1, 2 | eqeq12i 2220 |
. . 3
|
| 4 | eqoprab2b 6010 |
. . 3
| |
| 5 | pm5.32 453 |
. . . . . . 7
| |
| 6 | 5 | albii 1494 |
. . . . . 6
|
| 7 | 19.21v 1897 |
. . . . . 6
| |
| 8 | 6, 7 | bitr3i 186 |
. . . . 5
|
| 9 | 8 | 2albii 1495 |
. . . 4
|
| 10 | r2al 2526 |
. . . 4
| |
| 11 | 9, 10 | bitr4i 187 |
. . 3
|
| 12 | 3, 4, 11 | 3bitri 206 |
. 2
|
| 13 | pm13.183 2912 |
. . . . . 6
| |
| 14 | 13 | ralimi 2570 |
. . . . 5
|
| 15 | ralbi 2639 |
. . . . 5
| |
| 16 | 14, 15 | syl 14 |
. . . 4
|
| 17 | 16 | ralimi 2570 |
. . 3
|
| 18 | ralbi 2639 |
. . 3
| |
| 19 | 17, 18 | syl 14 |
. 2
|
| 20 | 12, 19 | bitr4id 199 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4166 ax-pow 4222 ax-pr 4257 ax-setind 4589 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-v 2775 df-dif 3169 df-un 3171 df-in 3173 df-ss 3180 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-oprab 5955 df-mpo 5956 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |