ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  otth Unicode version

Theorem otth 4328
Description: Ordered triple theorem. (Contributed by NM, 25-Sep-2014.) (Revised by Mario Carneiro, 26-Apr-2015.)
Hypotheses
Ref Expression
otth.1  |-  A  e. 
_V
otth.2  |-  B  e. 
_V
otth.3  |-  R  e. 
_V
Assertion
Ref Expression
otth  |-  ( <. A ,  B ,  R >.  =  <. C ,  D ,  S >.  <->  ( A  =  C  /\  B  =  D  /\  R  =  S )
)

Proof of Theorem otth
StepHypRef Expression
1 df-ot 3676 . . 3  |-  <. A ,  B ,  R >.  = 
<. <. A ,  B >. ,  R >.
2 df-ot 3676 . . 3  |-  <. C ,  D ,  S >.  = 
<. <. C ,  D >. ,  S >.
31, 2eqeq12i 2243 . 2  |-  ( <. A ,  B ,  R >.  =  <. C ,  D ,  S >.  <->  <. <. A ,  B >. ,  R >.  =  <. <. C ,  D >. ,  S >. )
4 otth.1 . . 3  |-  A  e. 
_V
5 otth.2 . . 3  |-  B  e. 
_V
6 otth.3 . . 3  |-  R  e. 
_V
74, 5, 6otth2 4327 . 2  |-  ( <. <. A ,  B >. ,  R >.  =  <. <. C ,  D >. ,  S >.  <->  ( A  =  C  /\  B  =  D  /\  R  =  S ) )
83, 7bitri 184 1  |-  ( <. A ,  B ,  R >.  =  <. C ,  D ,  S >.  <->  ( A  =  C  /\  B  =  D  /\  R  =  S )
)
Colors of variables: wff set class
Syntax hints:    <-> wb 105    /\ w3a 1002    = wceq 1395    e. wcel 2200   _Vcvv 2799   <.cop 3669   <.cotp 3670
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-ot 3676
This theorem is referenced by:  euotd  4341
  Copyright terms: Public domain W3C validator