| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > otth | Unicode version | ||
| Description: Ordered triple theorem. (Contributed by NM, 25-Sep-2014.) (Revised by Mario Carneiro, 26-Apr-2015.) |
| Ref | Expression |
|---|---|
| otth.1 |
|
| otth.2 |
|
| otth.3 |
|
| Ref | Expression |
|---|---|
| otth |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ot 3632 |
. . 3
| |
| 2 | df-ot 3632 |
. . 3
| |
| 3 | 1, 2 | eqeq12i 2210 |
. 2
|
| 4 | otth.1 |
. . 3
| |
| 5 | otth.2 |
. . 3
| |
| 6 | otth.3 |
. . 3
| |
| 7 | 4, 5, 6 | otth2 4274 |
. 2
|
| 8 | 3, 7 | bitri 184 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-ot 3632 |
| This theorem is referenced by: euotd 4287 |
| Copyright terms: Public domain | W3C validator |