ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  otth Unicode version

Theorem otth 4304
Description: Ordered triple theorem. (Contributed by NM, 25-Sep-2014.) (Revised by Mario Carneiro, 26-Apr-2015.)
Hypotheses
Ref Expression
otth.1  |-  A  e. 
_V
otth.2  |-  B  e. 
_V
otth.3  |-  R  e. 
_V
Assertion
Ref Expression
otth  |-  ( <. A ,  B ,  R >.  =  <. C ,  D ,  S >.  <->  ( A  =  C  /\  B  =  D  /\  R  =  S )
)

Proof of Theorem otth
StepHypRef Expression
1 df-ot 3653 . . 3  |-  <. A ,  B ,  R >.  = 
<. <. A ,  B >. ,  R >.
2 df-ot 3653 . . 3  |-  <. C ,  D ,  S >.  = 
<. <. C ,  D >. ,  S >.
31, 2eqeq12i 2221 . 2  |-  ( <. A ,  B ,  R >.  =  <. C ,  D ,  S >.  <->  <. <. A ,  B >. ,  R >.  =  <. <. C ,  D >. ,  S >. )
4 otth.1 . . 3  |-  A  e. 
_V
5 otth.2 . . 3  |-  B  e. 
_V
6 otth.3 . . 3  |-  R  e. 
_V
74, 5, 6otth2 4303 . 2  |-  ( <. <. A ,  B >. ,  R >.  =  <. <. C ,  D >. ,  S >.  <->  ( A  =  C  /\  B  =  D  /\  R  =  S ) )
83, 7bitri 184 1  |-  ( <. A ,  B ,  R >.  =  <. C ,  D ,  S >.  <->  ( A  =  C  /\  B  =  D  /\  R  =  S )
)
Colors of variables: wff set class
Syntax hints:    <-> wb 105    /\ w3a 981    = wceq 1373    e. wcel 2178   _Vcvv 2776   <.cop 3646   <.cotp 3647
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-v 2778  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-ot 3653
This theorem is referenced by:  euotd  4317
  Copyright terms: Public domain W3C validator