ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rncoeq Unicode version

Theorem rncoeq 4952
Description: Range of a composition. (Contributed by NM, 19-Mar-1998.)
Assertion
Ref Expression
rncoeq  |-  ( dom 
A  =  ran  B  ->  ran  ( A  o.  B )  =  ran  A )

Proof of Theorem rncoeq
StepHypRef Expression
1 dmcoeq 4951 . 2  |-  ( dom  `' B  =  ran  `' A  ->  dom  ( `' B  o.  `' A
)  =  dom  `' A )
2 eqcom 2207 . . 3  |-  ( dom 
A  =  ran  B  <->  ran 
B  =  dom  A
)
3 df-rn 4686 . . . 4  |-  ran  B  =  dom  `' B
4 dfdm4 4870 . . . 4  |-  dom  A  =  ran  `' A
53, 4eqeq12i 2219 . . 3  |-  ( ran 
B  =  dom  A  <->  dom  `' B  =  ran  `' A )
62, 5bitri 184 . 2  |-  ( dom 
A  =  ran  B  <->  dom  `' B  =  ran  `' A )
7 df-rn 4686 . . . 4  |-  ran  ( A  o.  B )  =  dom  `' ( A  o.  B )
8 cnvco 4863 . . . . 5  |-  `' ( A  o.  B )  =  ( `' B  o.  `' A )
98dmeqi 4879 . . . 4  |-  dom  `' ( A  o.  B
)  =  dom  ( `' B  o.  `' A )
107, 9eqtri 2226 . . 3  |-  ran  ( A  o.  B )  =  dom  ( `' B  o.  `' A )
11 df-rn 4686 . . 3  |-  ran  A  =  dom  `' A
1210, 11eqeq12i 2219 . 2  |-  ( ran  ( A  o.  B
)  =  ran  A  <->  dom  ( `' B  o.  `' A )  =  dom  `' A )
131, 6, 123imtr4i 201 1  |-  ( dom 
A  =  ran  B  ->  ran  ( A  o.  B )  =  ran  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373   `'ccnv 4674   dom cdm 4675   ran crn 4676    o. ccom 4679
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-v 2774  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-br 4045  df-opab 4106  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686
This theorem is referenced by:  dfdm2  5217  foco  5509
  Copyright terms: Public domain W3C validator