ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rncoeq Unicode version

Theorem rncoeq 4871
Description: Range of a composition. (Contributed by NM, 19-Mar-1998.)
Assertion
Ref Expression
rncoeq  |-  ( dom 
A  =  ran  B  ->  ran  ( A  o.  B )  =  ran  A )

Proof of Theorem rncoeq
StepHypRef Expression
1 dmcoeq 4870 . 2  |-  ( dom  `' B  =  ran  `' A  ->  dom  ( `' B  o.  `' A
)  =  dom  `' A )
2 eqcom 2166 . . 3  |-  ( dom 
A  =  ran  B  <->  ran 
B  =  dom  A
)
3 df-rn 4609 . . . 4  |-  ran  B  =  dom  `' B
4 dfdm4 4790 . . . 4  |-  dom  A  =  ran  `' A
53, 4eqeq12i 2178 . . 3  |-  ( ran 
B  =  dom  A  <->  dom  `' B  =  ran  `' A )
62, 5bitri 183 . 2  |-  ( dom 
A  =  ran  B  <->  dom  `' B  =  ran  `' A )
7 df-rn 4609 . . . 4  |-  ran  ( A  o.  B )  =  dom  `' ( A  o.  B )
8 cnvco 4783 . . . . 5  |-  `' ( A  o.  B )  =  ( `' B  o.  `' A )
98dmeqi 4799 . . . 4  |-  dom  `' ( A  o.  B
)  =  dom  ( `' B  o.  `' A )
107, 9eqtri 2185 . . 3  |-  ran  ( A  o.  B )  =  dom  ( `' B  o.  `' A )
11 df-rn 4609 . . 3  |-  ran  A  =  dom  `' A
1210, 11eqeq12i 2178 . 2  |-  ( ran  ( A  o.  B
)  =  ran  A  <->  dom  ( `' B  o.  `' A )  =  dom  `' A )
131, 6, 123imtr4i 200 1  |-  ( dom 
A  =  ran  B  ->  ran  ( A  o.  B )  =  ran  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1342   `'ccnv 4597   dom cdm 4598   ran crn 4599    o. ccom 4602
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-14 2138  ax-ext 2146  ax-sep 4094  ax-pow 4147  ax-pr 4181
This theorem depends on definitions:  df-bi 116  df-3an 969  df-tru 1345  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-v 2723  df-un 3115  df-in 3117  df-ss 3124  df-pw 3555  df-sn 3576  df-pr 3577  df-op 3579  df-br 3977  df-opab 4038  df-cnv 4606  df-co 4607  df-dm 4608  df-rn 4609
This theorem is referenced by:  dfdm2  5132  foco  5414
  Copyright terms: Public domain W3C validator