ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rncoeq Unicode version

Theorem rncoeq 4807
Description: Range of a composition. (Contributed by NM, 19-Mar-1998.)
Assertion
Ref Expression
rncoeq  |-  ( dom 
A  =  ran  B  ->  ran  ( A  o.  B )  =  ran  A )

Proof of Theorem rncoeq
StepHypRef Expression
1 dmcoeq 4806 . 2  |-  ( dom  `' B  =  ran  `' A  ->  dom  ( `' B  o.  `' A
)  =  dom  `' A )
2 eqcom 2139 . . 3  |-  ( dom 
A  =  ran  B  <->  ran 
B  =  dom  A
)
3 df-rn 4545 . . . 4  |-  ran  B  =  dom  `' B
4 dfdm4 4726 . . . 4  |-  dom  A  =  ran  `' A
53, 4eqeq12i 2151 . . 3  |-  ( ran 
B  =  dom  A  <->  dom  `' B  =  ran  `' A )
62, 5bitri 183 . 2  |-  ( dom 
A  =  ran  B  <->  dom  `' B  =  ran  `' A )
7 df-rn 4545 . . . 4  |-  ran  ( A  o.  B )  =  dom  `' ( A  o.  B )
8 cnvco 4719 . . . . 5  |-  `' ( A  o.  B )  =  ( `' B  o.  `' A )
98dmeqi 4735 . . . 4  |-  dom  `' ( A  o.  B
)  =  dom  ( `' B  o.  `' A )
107, 9eqtri 2158 . . 3  |-  ran  ( A  o.  B )  =  dom  ( `' B  o.  `' A )
11 df-rn 4545 . . 3  |-  ran  A  =  dom  `' A
1210, 11eqeq12i 2151 . 2  |-  ( ran  ( A  o.  B
)  =  ran  A  <->  dom  ( `' B  o.  `' A )  =  dom  `' A )
131, 6, 123imtr4i 200 1  |-  ( dom 
A  =  ran  B  ->  ran  ( A  o.  B )  =  ran  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1331   `'ccnv 4533   dom cdm 4534   ran crn 4535    o. ccom 4538
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-sep 4041  ax-pow 4093  ax-pr 4126
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-v 2683  df-un 3070  df-in 3072  df-ss 3079  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-br 3925  df-opab 3985  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545
This theorem is referenced by:  dfdm2  5068  foco  5350
  Copyright terms: Public domain W3C validator