ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rncoeq Unicode version

Theorem rncoeq 4935
Description: Range of a composition. (Contributed by NM, 19-Mar-1998.)
Assertion
Ref Expression
rncoeq  |-  ( dom 
A  =  ran  B  ->  ran  ( A  o.  B )  =  ran  A )

Proof of Theorem rncoeq
StepHypRef Expression
1 dmcoeq 4934 . 2  |-  ( dom  `' B  =  ran  `' A  ->  dom  ( `' B  o.  `' A
)  =  dom  `' A )
2 eqcom 2195 . . 3  |-  ( dom 
A  =  ran  B  <->  ran 
B  =  dom  A
)
3 df-rn 4670 . . . 4  |-  ran  B  =  dom  `' B
4 dfdm4 4854 . . . 4  |-  dom  A  =  ran  `' A
53, 4eqeq12i 2207 . . 3  |-  ( ran 
B  =  dom  A  <->  dom  `' B  =  ran  `' A )
62, 5bitri 184 . 2  |-  ( dom 
A  =  ran  B  <->  dom  `' B  =  ran  `' A )
7 df-rn 4670 . . . 4  |-  ran  ( A  o.  B )  =  dom  `' ( A  o.  B )
8 cnvco 4847 . . . . 5  |-  `' ( A  o.  B )  =  ( `' B  o.  `' A )
98dmeqi 4863 . . . 4  |-  dom  `' ( A  o.  B
)  =  dom  ( `' B  o.  `' A )
107, 9eqtri 2214 . . 3  |-  ran  ( A  o.  B )  =  dom  ( `' B  o.  `' A )
11 df-rn 4670 . . 3  |-  ran  A  =  dom  `' A
1210, 11eqeq12i 2207 . 2  |-  ( ran  ( A  o.  B
)  =  ran  A  <->  dom  ( `' B  o.  `' A )  =  dom  `' A )
131, 6, 123imtr4i 201 1  |-  ( dom 
A  =  ran  B  ->  ran  ( A  o.  B )  =  ran  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364   `'ccnv 4658   dom cdm 4659   ran crn 4660    o. ccom 4663
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-br 4030  df-opab 4091  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670
This theorem is referenced by:  dfdm2  5200  foco  5487
  Copyright terms: Public domain W3C validator