ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rncoeq Unicode version

Theorem rncoeq 4877
Description: Range of a composition. (Contributed by NM, 19-Mar-1998.)
Assertion
Ref Expression
rncoeq  |-  ( dom 
A  =  ran  B  ->  ran  ( A  o.  B )  =  ran  A )

Proof of Theorem rncoeq
StepHypRef Expression
1 dmcoeq 4876 . 2  |-  ( dom  `' B  =  ran  `' A  ->  dom  ( `' B  o.  `' A
)  =  dom  `' A )
2 eqcom 2167 . . 3  |-  ( dom 
A  =  ran  B  <->  ran 
B  =  dom  A
)
3 df-rn 4615 . . . 4  |-  ran  B  =  dom  `' B
4 dfdm4 4796 . . . 4  |-  dom  A  =  ran  `' A
53, 4eqeq12i 2179 . . 3  |-  ( ran 
B  =  dom  A  <->  dom  `' B  =  ran  `' A )
62, 5bitri 183 . 2  |-  ( dom 
A  =  ran  B  <->  dom  `' B  =  ran  `' A )
7 df-rn 4615 . . . 4  |-  ran  ( A  o.  B )  =  dom  `' ( A  o.  B )
8 cnvco 4789 . . . . 5  |-  `' ( A  o.  B )  =  ( `' B  o.  `' A )
98dmeqi 4805 . . . 4  |-  dom  `' ( A  o.  B
)  =  dom  ( `' B  o.  `' A )
107, 9eqtri 2186 . . 3  |-  ran  ( A  o.  B )  =  dom  ( `' B  o.  `' A )
11 df-rn 4615 . . 3  |-  ran  A  =  dom  `' A
1210, 11eqeq12i 2179 . 2  |-  ( ran  ( A  o.  B
)  =  ran  A  <->  dom  ( `' B  o.  `' A )  =  dom  `' A )
131, 6, 123imtr4i 200 1  |-  ( dom 
A  =  ran  B  ->  ran  ( A  o.  B )  =  ran  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1343   `'ccnv 4603   dom cdm 4604   ran crn 4605    o. ccom 4608
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-br 3983  df-opab 4044  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615
This theorem is referenced by:  dfdm2  5138  foco  5420
  Copyright terms: Public domain W3C validator