ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqeq12i GIF version

Theorem eqeq12i 2210
Description: A useful inference for substituting definitions into an equality. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 25-May-2011.)
Hypotheses
Ref Expression
eqeq12i.1 𝐴 = 𝐵
eqeq12i.2 𝐶 = 𝐷
Assertion
Ref Expression
eqeq12i (𝐴 = 𝐶𝐵 = 𝐷)

Proof of Theorem eqeq12i
StepHypRef Expression
1 eqeq12i.1 . 2 𝐴 = 𝐵
2 eqeq12i.2 . 2 𝐶 = 𝐷
3 eqeq12 2209 . 2 ((𝐴 = 𝐵𝐶 = 𝐷) → (𝐴 = 𝐶𝐵 = 𝐷))
41, 2, 3mp2an 426 1 (𝐴 = 𝐶𝐵 = 𝐷)
Colors of variables: wff set class
Syntax hints:  wb 105   = wceq 1364
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-gen 1463  ax-4 1524  ax-17 1540  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-cleq 2189
This theorem is referenced by:  rabbi  2675  sbceqg  3100  preqr2g  3797  preqr2  3799  otth  4275  rncoeq  4939  eqfnov  6029  mpo2eqb  6032  f1o2ndf1  6286  ecopovsym  6690  sq11i  10706  dvmptfsum  14937  pwle2  15610
  Copyright terms: Public domain W3C validator