ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqsbc3 Unicode version

Theorem eqsbc3 2892
Description: Substitution applied to an atomic wff. Set theory version of eqsb3 2198. (Contributed by Andrew Salmon, 29-Jun-2011.)
Assertion
Ref Expression
eqsbc3  |-  ( A  e.  V  ->  ( [. A  /  x ]. x  =  B  <->  A  =  B ) )
Distinct variable group:    x, B
Allowed substitution hints:    A( x)    V( x)

Proof of Theorem eqsbc3
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 dfsbcq 2856 . 2  |-  ( y  =  A  ->  ( [. y  /  x ]. x  =  B  <->  [. A  /  x ]. x  =  B )
)
2 eqeq1 2101 . 2  |-  ( y  =  A  ->  (
y  =  B  <->  A  =  B ) )
3 sbsbc 2858 . . 3  |-  ( [ y  /  x ]
x  =  B  <->  [. y  /  x ]. x  =  B )
4 eqsb3 2198 . . 3  |-  ( [ y  /  x ]
x  =  B  <->  y  =  B )
53, 4bitr3i 185 . 2  |-  ( [. y  /  x ]. x  =  B  <->  y  =  B )
61, 2, 5vtoclbg 2694 1  |-  ( A  e.  V  ->  ( [. A  /  x ]. x  =  B  <->  A  =  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    = wceq 1296    e. wcel 1445   [wsb 1699   [.wsbc 2854
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 668  ax-5 1388  ax-7 1389  ax-gen 1390  ax-ie1 1434  ax-ie2 1435  ax-8 1447  ax-10 1448  ax-11 1449  ax-i12 1450  ax-bndl 1451  ax-4 1452  ax-17 1471  ax-i9 1475  ax-ial 1479  ax-i5r 1480  ax-ext 2077
This theorem depends on definitions:  df-bi 116  df-tru 1299  df-nf 1402  df-sb 1700  df-clab 2082  df-cleq 2088  df-clel 2091  df-nfc 2224  df-v 2635  df-sbc 2855
This theorem is referenced by:  sbceqal  2908  eqsbc3r  2913
  Copyright terms: Public domain W3C validator