ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqsb3 Unicode version

Theorem eqsb3 2192
Description: Substitution applied to an atomic wff (class version of equsb3 1874). (Contributed by Rodolfo Medina, 28-Apr-2010.)
Assertion
Ref Expression
eqsb3  |-  ( [ x  /  y ] y  =  A  <->  x  =  A )
Distinct variable group:    y, A
Allowed substitution hint:    A( x)

Proof of Theorem eqsb3
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 eqsb3lem 2191 . . 3  |-  ( [ w  /  y ] y  =  A  <->  w  =  A )
21sbbii 1696 . 2  |-  ( [ x  /  w ] [ w  /  y ] y  =  A  <->  [ x  /  w ] w  =  A
)
3 nfv 1467 . . 3  |-  F/ w  y  =  A
43sbco2 1888 . 2  |-  ( [ x  /  w ] [ w  /  y ] y  =  A  <->  [ x  /  y ] y  =  A )
5 eqsb3lem 2191 . 2  |-  ( [ x  /  w ]
w  =  A  <->  x  =  A )
62, 4, 53bitr3i 209 1  |-  ( [ x  /  y ] y  =  A  <->  x  =  A )
Colors of variables: wff set class
Syntax hints:    <-> wb 104    = wceq 1290   [wsb 1693
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071
This theorem depends on definitions:  df-bi 116  df-nf 1396  df-sb 1694  df-cleq 2082
This theorem is referenced by:  pm13.183  2757  eqsbc3  2881
  Copyright terms: Public domain W3C validator