| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elrabsf | Unicode version | ||
| Description: Membership in a
restricted class abstraction, expressed with explicit
class substitution. (The variation elrabf 2957 has implicit substitution).
The hypothesis specifies that |
| Ref | Expression |
|---|---|
| elrabsf.1 |
|
| Ref | Expression |
|---|---|
| elrabsf |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfsbcq 3030 |
. 2
| |
| 2 | elrabsf.1 |
. . 3
| |
| 3 | nfcv 2372 |
. . 3
| |
| 4 | nfv 1574 |
. . 3
| |
| 5 | nfsbc1v 3047 |
. . 3
| |
| 6 | sbceq1a 3038 |
. . 3
| |
| 7 | 2, 3, 4, 5, 6 | cbvrab 2797 |
. 2
|
| 8 | 1, 7 | elrab2 2962 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-rab 2517 df-v 2801 df-sbc 3029 |
| This theorem is referenced by: mpoxopovel 6387 zsupcllemstep 10449 infssuzex 10453 |
| Copyright terms: Public domain | W3C validator |