Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elrabsf | Unicode version |
Description: Membership in a restricted class abstraction, expressed with explicit class substitution. (The variation elrabf 2880 has implicit substitution). The hypothesis specifies that must not be a free variable in . (Contributed by NM, 30-Sep-2003.) (Proof shortened by Mario Carneiro, 13-Oct-2016.) |
Ref | Expression |
---|---|
elrabsf.1 |
Ref | Expression |
---|---|
elrabsf |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfsbcq 2953 | . 2 | |
2 | elrabsf.1 | . . 3 | |
3 | nfcv 2308 | . . 3 | |
4 | nfv 1516 | . . 3 | |
5 | nfsbc1v 2969 | . . 3 | |
6 | sbceq1a 2960 | . . 3 | |
7 | 2, 3, 4, 5, 6 | cbvrab 2724 | . 2 |
8 | 1, 7 | elrab2 2885 | 1 |
Colors of variables: wff set class |
Syntax hints: wa 103 wb 104 wcel 2136 wnfc 2295 crab 2448 wsbc 2951 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-rab 2453 df-v 2728 df-sbc 2952 |
This theorem is referenced by: mpoxopovel 6209 zsupcllemstep 11878 infssuzex 11882 |
Copyright terms: Public domain | W3C validator |