| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > euequ1 | Unicode version | ||
| Description: Equality has existential uniqueness. (Contributed by Stefan Allan, 4-Dec-2008.) |
| Ref | Expression |
|---|---|
| euequ1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | a9e 1719 |
. 2
| |
| 2 | equtr2 1734 |
. . 3
| |
| 3 | 2 | gen2 1473 |
. 2
|
| 4 | equequ1 1735 |
. . 3
| |
| 5 | 4 | eu4 2116 |
. 2
|
| 6 | 1, 3, 5 | mpbir2an 945 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 |
| This theorem depends on definitions: df-bi 117 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 |
| This theorem is referenced by: copsexg 4288 oprabid 5976 |
| Copyright terms: Public domain | W3C validator |