ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  euequ1 Unicode version

Theorem euequ1 2151
Description: Equality has existential uniqueness. (Contributed by Stefan Allan, 4-Dec-2008.)
Assertion
Ref Expression
euequ1  |-  E! x  x  =  y
Distinct variable group:    x, y

Proof of Theorem euequ1
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 a9e 1720 . 2  |-  E. x  x  =  y
2 equtr2 1735 . . 3  |-  ( ( x  =  y  /\  z  =  y )  ->  x  =  z )
32gen2 1474 . 2  |-  A. x A. z ( ( x  =  y  /\  z  =  y )  ->  x  =  z )
4 equequ1 1736 . . 3  |-  ( x  =  z  ->  (
x  =  y  <->  z  =  y ) )
54eu4 2118 . 2  |-  ( E! x  x  =  y  <-> 
( E. x  x  =  y  /\  A. x A. z ( ( x  =  y  /\  z  =  y )  ->  x  =  z ) ) )
61, 3, 5mpbir2an 945 1  |-  E! x  x  =  y
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104   A.wal 1371   E.wex 1516   E!weu 2055
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559
This theorem depends on definitions:  df-bi 117  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059
This theorem is referenced by:  copsexg  4306  oprabid  5999
  Copyright terms: Public domain W3C validator