ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eu4 Unicode version

Theorem eu4 2076
Description: Uniqueness using implicit substitution. (Contributed by NM, 26-Jul-1995.)
Hypothesis
Ref Expression
eu4.1  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
eu4  |-  ( E! x ph  <->  ( E. x ph  /\  A. x A. y ( ( ph  /\ 
ps )  ->  x  =  y ) ) )
Distinct variable groups:    x, y    ph, y    ps, x
Allowed substitution hints:    ph( x)    ps( y)

Proof of Theorem eu4
StepHypRef Expression
1 eu5 2061 . 2  |-  ( E! x ph  <->  ( E. x ph  /\  E* x ph ) )
2 eu4.1 . . . 4  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
32mo4 2075 . . 3  |-  ( E* x ph  <->  A. x A. y ( ( ph  /\ 
ps )  ->  x  =  y ) )
43anbi2i 453 . 2  |-  ( ( E. x ph  /\  E* x ph )  <->  ( E. x ph  /\  A. x A. y ( ( ph  /\ 
ps )  ->  x  =  y ) ) )
51, 4bitri 183 1  |-  ( E! x ph  <->  ( E. x ph  /\  A. x A. y ( ( ph  /\ 
ps )  ->  x  =  y ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104   A.wal 1341   E.wex 1480   E!weu 2014   E*wmo 2015
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523
This theorem depends on definitions:  df-bi 116  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018
This theorem is referenced by:  euequ1  2109  eueq  2896  euind  2912  eusv1  4429  eroveu  6588  climeu  11233  pceu  12223
  Copyright terms: Public domain W3C validator