ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eu4 Unicode version

Theorem eu4 2100
Description: Uniqueness using implicit substitution. (Contributed by NM, 26-Jul-1995.)
Hypothesis
Ref Expression
eu4.1  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
eu4  |-  ( E! x ph  <->  ( E. x ph  /\  A. x A. y ( ( ph  /\ 
ps )  ->  x  =  y ) ) )
Distinct variable groups:    x, y    ph, y    ps, x
Allowed substitution hints:    ph( x)    ps( y)

Proof of Theorem eu4
StepHypRef Expression
1 eu5 2085 . 2  |-  ( E! x ph  <->  ( E. x ph  /\  E* x ph ) )
2 eu4.1 . . . 4  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
32mo4 2099 . . 3  |-  ( E* x ph  <->  A. x A. y ( ( ph  /\ 
ps )  ->  x  =  y ) )
43anbi2i 457 . 2  |-  ( ( E. x ph  /\  E* x ph )  <->  ( E. x ph  /\  A. x A. y ( ( ph  /\ 
ps )  ->  x  =  y ) ) )
51, 4bitri 184 1  |-  ( E! x ph  <->  ( E. x ph  /\  A. x A. y ( ( ph  /\ 
ps )  ->  x  =  y ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105   A.wal 1362   E.wex 1503   E!weu 2038   E*wmo 2039
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546
This theorem depends on definitions:  df-bi 117  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042
This theorem is referenced by:  euequ1  2133  eueq  2923  euind  2939  eusv1  4470  eroveu  6651  climeu  11335  pceu  12326
  Copyright terms: Public domain W3C validator