Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eupickb | GIF version |
Description: Existential uniqueness "pick" showing wff equivalence. (Contributed by NM, 25-Nov-1994.) |
Ref | Expression |
---|---|
eupickb | ⊢ ((∃!𝑥𝜑 ∧ ∃!𝑥𝜓 ∧ ∃𝑥(𝜑 ∧ 𝜓)) → (𝜑 ↔ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eupick 2103 | . . 3 ⊢ ((∃!𝑥𝜑 ∧ ∃𝑥(𝜑 ∧ 𝜓)) → (𝜑 → 𝜓)) | |
2 | 1 | 3adant2 1016 | . 2 ⊢ ((∃!𝑥𝜑 ∧ ∃!𝑥𝜓 ∧ ∃𝑥(𝜑 ∧ 𝜓)) → (𝜑 → 𝜓)) |
3 | 3simpc 996 | . . 3 ⊢ ((∃!𝑥𝜑 ∧ ∃!𝑥𝜓 ∧ ∃𝑥(𝜑 ∧ 𝜓)) → (∃!𝑥𝜓 ∧ ∃𝑥(𝜑 ∧ 𝜓))) | |
4 | pm3.22 265 | . . . . 5 ⊢ ((𝜑 ∧ 𝜓) → (𝜓 ∧ 𝜑)) | |
5 | 4 | eximi 1598 | . . . 4 ⊢ (∃𝑥(𝜑 ∧ 𝜓) → ∃𝑥(𝜓 ∧ 𝜑)) |
6 | 5 | anim2i 342 | . . 3 ⊢ ((∃!𝑥𝜓 ∧ ∃𝑥(𝜑 ∧ 𝜓)) → (∃!𝑥𝜓 ∧ ∃𝑥(𝜓 ∧ 𝜑))) |
7 | eupick 2103 | . . 3 ⊢ ((∃!𝑥𝜓 ∧ ∃𝑥(𝜓 ∧ 𝜑)) → (𝜓 → 𝜑)) | |
8 | 3, 6, 7 | 3syl 17 | . 2 ⊢ ((∃!𝑥𝜑 ∧ ∃!𝑥𝜓 ∧ ∃𝑥(𝜑 ∧ 𝜓)) → (𝜓 → 𝜑)) |
9 | 2, 8 | impbid 129 | 1 ⊢ ((∃!𝑥𝜑 ∧ ∃!𝑥𝜓 ∧ ∃𝑥(𝜑 ∧ 𝜓)) → (𝜑 ↔ 𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 978 ∃wex 1490 ∃!weu 2024 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |