ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eupickb GIF version

Theorem eupickb 2159
Description: Existential uniqueness "pick" showing wff equivalence. (Contributed by NM, 25-Nov-1994.)
Assertion
Ref Expression
eupickb ((∃!𝑥𝜑 ∧ ∃!𝑥𝜓 ∧ ∃𝑥(𝜑𝜓)) → (𝜑𝜓))

Proof of Theorem eupickb
StepHypRef Expression
1 eupick 2157 . . 3 ((∃!𝑥𝜑 ∧ ∃𝑥(𝜑𝜓)) → (𝜑𝜓))
213adant2 1040 . 2 ((∃!𝑥𝜑 ∧ ∃!𝑥𝜓 ∧ ∃𝑥(𝜑𝜓)) → (𝜑𝜓))
3 3simpc 1020 . . 3 ((∃!𝑥𝜑 ∧ ∃!𝑥𝜓 ∧ ∃𝑥(𝜑𝜓)) → (∃!𝑥𝜓 ∧ ∃𝑥(𝜑𝜓)))
4 pm3.22 265 . . . . 5 ((𝜑𝜓) → (𝜓𝜑))
54eximi 1646 . . . 4 (∃𝑥(𝜑𝜓) → ∃𝑥(𝜓𝜑))
65anim2i 342 . . 3 ((∃!𝑥𝜓 ∧ ∃𝑥(𝜑𝜓)) → (∃!𝑥𝜓 ∧ ∃𝑥(𝜓𝜑)))
7 eupick 2157 . . 3 ((∃!𝑥𝜓 ∧ ∃𝑥(𝜓𝜑)) → (𝜓𝜑))
83, 6, 73syl 17 . 2 ((∃!𝑥𝜑 ∧ ∃!𝑥𝜓 ∧ ∃𝑥(𝜑𝜓)) → (𝜓𝜑))
92, 8impbid 129 1 ((∃!𝑥𝜑 ∧ ∃!𝑥𝜓 ∧ ∃𝑥(𝜑𝜓)) → (𝜑𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 1002  wex 1538  ∃!weu 2077
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator