ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eupickb GIF version

Theorem eupickb 2136
Description: Existential uniqueness "pick" showing wff equivalence. (Contributed by NM, 25-Nov-1994.)
Assertion
Ref Expression
eupickb ((∃!𝑥𝜑 ∧ ∃!𝑥𝜓 ∧ ∃𝑥(𝜑𝜓)) → (𝜑𝜓))

Proof of Theorem eupickb
StepHypRef Expression
1 eupick 2134 . . 3 ((∃!𝑥𝜑 ∧ ∃𝑥(𝜑𝜓)) → (𝜑𝜓))
213adant2 1019 . 2 ((∃!𝑥𝜑 ∧ ∃!𝑥𝜓 ∧ ∃𝑥(𝜑𝜓)) → (𝜑𝜓))
3 3simpc 999 . . 3 ((∃!𝑥𝜑 ∧ ∃!𝑥𝜓 ∧ ∃𝑥(𝜑𝜓)) → (∃!𝑥𝜓 ∧ ∃𝑥(𝜑𝜓)))
4 pm3.22 265 . . . . 5 ((𝜑𝜓) → (𝜓𝜑))
54eximi 1624 . . . 4 (∃𝑥(𝜑𝜓) → ∃𝑥(𝜓𝜑))
65anim2i 342 . . 3 ((∃!𝑥𝜓 ∧ ∃𝑥(𝜑𝜓)) → (∃!𝑥𝜓 ∧ ∃𝑥(𝜓𝜑)))
7 eupick 2134 . . 3 ((∃!𝑥𝜓 ∧ ∃𝑥(𝜓𝜑)) → (𝜓𝜑))
83, 6, 73syl 17 . 2 ((∃!𝑥𝜑 ∧ ∃!𝑥𝜓 ∧ ∃𝑥(𝜑𝜓)) → (𝜓𝜑))
92, 8impbid 129 1 ((∃!𝑥𝜑 ∧ ∃!𝑥𝜓 ∧ ∃𝑥(𝜑𝜓)) → (𝜑𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 981  wex 1516  ∃!weu 2055
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559
This theorem depends on definitions:  df-bi 117  df-3an 983  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator