ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3simpc Unicode version

Theorem 3simpc 991
Description: Simplification of triple conjunction. (Contributed by NM, 21-Apr-1994.) (Proof shortened by Andrew Salmon, 13-May-2011.)
Assertion
Ref Expression
3simpc  |-  ( (
ph  /\  ps  /\  ch )  ->  ( ps  /\  ch ) )

Proof of Theorem 3simpc
StepHypRef Expression
1 3anrot 978 . 2  |-  ( (
ph  /\  ps  /\  ch ) 
<->  ( ps  /\  ch  /\ 
ph ) )
2 3simpa 989 . 2  |-  ( ( ps  /\  ch  /\  ph )  ->  ( ps  /\ 
ch ) )
31, 2sylbi 120 1  |-  ( (
ph  /\  ps  /\  ch )  ->  ( ps  /\  ch ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    /\ w3a 973
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116  df-3an 975
This theorem is referenced by:  simp3  994  3adant1  1010  3adantl1  1148  3adantr1  1151  eupickb  2100  find  4583  fisseneq  6909  eqsupti  6973  divcanap2  8597  diveqap0  8599  divrecap  8605  divcanap3  8615  eliooord  9885  fzrev3  10043  sqdivap  10540  muldvds2  11779  dvdscmul  11780  dvdsmulc  11781  dvdstr  11790  cncfmptc  13376  cnplimclemr  13432
  Copyright terms: Public domain W3C validator