| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3simpc | Unicode version | ||
| Description: Simplification of triple conjunction. (Contributed by NM, 21-Apr-1994.) (Proof shortened by Andrew Salmon, 13-May-2011.) |
| Ref | Expression |
|---|---|
| 3simpc |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3anrot 986 |
. 2
| |
| 2 | 3simpa 997 |
. 2
| |
| 3 | 1, 2 | sylbi 121 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 983 |
| This theorem is referenced by: simp3 1002 3adant1 1018 3adantl1 1156 3adantr1 1159 eupickb 2136 find 4655 fovcld 6063 fisseneq 7046 eqsupti 7113 divcanap2 8773 diveqap0 8775 divrecap 8781 divcanap3 8791 eliooord 10070 fzrev3 10229 sqdivap 10770 swrdlend 11134 swrdnd 11135 muldvds2 12203 dvdscmul 12204 dvdsmulc 12205 dvdstr 12214 domneq0 14109 znleval2 14491 cncfmptc 15143 cnplimclemr 15216 |
| Copyright terms: Public domain | W3C validator |