| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3simpc | Unicode version | ||
| Description: Simplification of triple conjunction. (Contributed by NM, 21-Apr-1994.) (Proof shortened by Andrew Salmon, 13-May-2011.) |
| Ref | Expression |
|---|---|
| 3simpc |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3anrot 985 |
. 2
| |
| 2 | 3simpa 996 |
. 2
| |
| 3 | 1, 2 | sylbi 121 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: simp3 1001 3adant1 1017 3adantl1 1155 3adantr1 1158 eupickb 2134 find 4646 fovcld 6049 fisseneq 7030 eqsupti 7097 divcanap2 8752 diveqap0 8754 divrecap 8760 divcanap3 8770 eliooord 10049 fzrev3 10208 sqdivap 10746 muldvds2 12070 dvdscmul 12071 dvdsmulc 12072 dvdstr 12081 domneq0 13976 znleval2 14358 cncfmptc 15010 cnplimclemr 15083 |
| Copyright terms: Public domain | W3C validator |