| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3simpc | Unicode version | ||
| Description: Simplification of triple conjunction. (Contributed by NM, 21-Apr-1994.) (Proof shortened by Andrew Salmon, 13-May-2011.) |
| Ref | Expression |
|---|---|
| 3simpc |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3anrot 985 |
. 2
| |
| 2 | 3simpa 996 |
. 2
| |
| 3 | 1, 2 | sylbi 121 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: simp3 1001 3adant1 1017 3adantl1 1155 3adantr1 1158 eupickb 2134 find 4646 fovcld 6049 fisseneq 7030 eqsupti 7097 divcanap2 8752 diveqap0 8754 divrecap 8760 divcanap3 8770 eliooord 10049 fzrev3 10208 sqdivap 10746 muldvds2 12099 dvdscmul 12100 dvdsmulc 12101 dvdstr 12110 domneq0 14005 znleval2 14387 cncfmptc 15039 cnplimclemr 15112 |
| Copyright terms: Public domain | W3C validator |