| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3simpc | Unicode version | ||
| Description: Simplification of triple conjunction. (Contributed by NM, 21-Apr-1994.) (Proof shortened by Andrew Salmon, 13-May-2011.) |
| Ref | Expression |
|---|---|
| 3simpc |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3anrot 1007 |
. 2
| |
| 2 | 3simpa 1018 |
. 2
| |
| 3 | 1, 2 | sylbi 121 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 |
| This theorem is referenced by: simp3 1023 3adant1 1039 3adantl1 1177 3adantr1 1180 eupickb 2159 find 4690 fovcld 6108 fisseneq 7092 eqsupti 7159 divcanap2 8823 diveqap0 8825 divrecap 8831 divcanap3 8841 eliooord 10120 fzrev3 10279 sqdivap 10820 swrdlend 11185 swrdnd 11186 ccats1pfxeqbi 11269 muldvds2 12323 dvdscmul 12324 dvdsmulc 12325 dvdstr 12334 domneq0 14230 znleval2 14612 cncfmptc 15264 cnplimclemr 15337 uhgr2edg 15998 umgr2edgneu 16004 |
| Copyright terms: Public domain | W3C validator |