| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eximdv | Unicode version | ||
| Description: Deduction from Theorem 19.22 of [Margaris] p. 90. (Contributed by NM, 27-Apr-1994.) |
| Ref | Expression |
|---|---|
| alimdv.1 |
|
| Ref | Expression |
|---|---|
| eximdv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-17 1572 |
. 2
| |
| 2 | alimdv.1 |
. 2
| |
| 3 | 1, 2 | eximdh 1657 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-4 1556 ax-17 1572 ax-ial 1580 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: 2eximdv 1928 reximdv2 2629 cgsexg 2835 spc3egv 2895 euind 2990 ssel 3218 reupick 3488 reximdva0m 3507 uniss 3909 eusvnfb 4545 coss1 4877 coss2 4878 ssrelrn 4914 dmss 4922 dmcosseq 4996 funssres 5360 imain 5403 brprcneu 5620 fv3 5650 dffo4 5783 dffo5 5784 f1eqcocnv 5915 mapsn 6837 en2m 6974 ctssdccl 7278 acfun 7389 ccfunen 7450 cc4f 7455 cc4n 7457 dmaddpq 7566 dmmulpq 7567 recexprlemlol 7813 recexprlemupu 7815 ioom 10480 ctinfom 12999 ctinf 13001 omctfn 13014 nninfdclemp1 13021 ptex 13297 subgintm 13735 txcn 14949 |
| Copyright terms: Public domain | W3C validator |