ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exse Unicode version

Theorem exse 4382
Description: Any relation on a set is set-like on it. (Contributed by Mario Carneiro, 22-Jun-2015.)
Assertion
Ref Expression
exse  |-  ( A  e.  V  ->  R Se  A )

Proof of Theorem exse
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rabexg 4186 . . 3  |-  ( A  e.  V  ->  { y  e.  A  |  y R x }  e.  _V )
21ralrimivw 2579 . 2  |-  ( A  e.  V  ->  A. x  e.  A  { y  e.  A  |  y R x }  e.  _V )
3 df-se 4379 . 2  |-  ( R Se  A  <->  A. x  e.  A  { y  e.  A  |  y R x }  e.  _V )
42, 3sylibr 134 1  |-  ( A  e.  V  ->  R Se  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2175   A.wral 2483   {crab 2487   _Vcvv 2771   class class class wbr 4043   Se wse 4375
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186  ax-sep 4161
This theorem depends on definitions:  df-bi 117  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rab 2492  df-v 2773  df-in 3171  df-ss 3178  df-se 4379
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator