ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exse Unicode version

Theorem exse 4218
Description: Any relation on a set is set-like on it. (Contributed by Mario Carneiro, 22-Jun-2015.)
Assertion
Ref Expression
exse  |-  ( A  e.  V  ->  R Se  A )

Proof of Theorem exse
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rabexg 4031 . . 3  |-  ( A  e.  V  ->  { y  e.  A  |  y R x }  e.  _V )
21ralrimivw 2480 . 2  |-  ( A  e.  V  ->  A. x  e.  A  { y  e.  A  |  y R x }  e.  _V )
3 df-se 4215 . 2  |-  ( R Se  A  <->  A. x  e.  A  { y  e.  A  |  y R x }  e.  _V )
42, 3sylibr 133 1  |-  ( A  e.  V  ->  R Se  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 1463   A.wral 2390   {crab 2394   _Vcvv 2657   class class class wbr 3895   Se wse 4211
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-sep 4006
This theorem depends on definitions:  df-bi 116  df-tru 1317  df-nf 1420  df-sb 1719  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2244  df-ral 2395  df-rab 2399  df-v 2659  df-in 3043  df-ss 3050  df-se 4215
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator