ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sess1 Unicode version

Theorem sess1 4402
Description: Subset theorem for the set-like predicate. (Contributed by Mario Carneiro, 24-Jun-2015.)
Assertion
Ref Expression
sess1  |-  ( R 
C_  S  ->  ( S Se  A  ->  R Se  A
) )

Proof of Theorem sess1
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 109 . . . . . 6  |-  ( ( R  C_  S  /\  y  e.  A )  ->  R  C_  S )
21ssbrd 4102 . . . . 5  |-  ( ( R  C_  S  /\  y  e.  A )  ->  ( y R x  ->  y S x ) )
32ss2rabdv 3282 . . . 4  |-  ( R 
C_  S  ->  { y  e.  A  |  y R x }  C_  { y  e.  A  | 
y S x }
)
4 ssexg 4199 . . . . 5  |-  ( ( { y  e.  A  |  y R x }  C_  { y  e.  A  |  y S x }  /\  { y  e.  A  | 
y S x }  e.  _V )  ->  { y  e.  A  |  y R x }  e.  _V )
54ex 115 . . . 4  |-  ( { y  e.  A  | 
y R x }  C_ 
{ y  e.  A  |  y S x }  ->  ( {
y  e.  A  | 
y S x }  e.  _V  ->  { y  e.  A  |  y R x }  e.  _V ) )
63, 5syl 14 . . 3  |-  ( R 
C_  S  ->  ( { y  e.  A  |  y S x }  e.  _V  ->  { y  e.  A  | 
y R x }  e.  _V ) )
76ralimdv 2576 . 2  |-  ( R 
C_  S  ->  ( A. x  e.  A  { y  e.  A  |  y S x }  e.  _V  ->  A. x  e.  A  {
y  e.  A  | 
y R x }  e.  _V ) )
8 df-se 4398 . 2  |-  ( S Se  A  <->  A. x  e.  A  { y  e.  A  |  y S x }  e.  _V )
9 df-se 4398 . 2  |-  ( R Se  A  <->  A. x  e.  A  { y  e.  A  |  y R x }  e.  _V )
107, 8, 93imtr4g 205 1  |-  ( R 
C_  S  ->  ( S Se  A  ->  R Se  A
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    e. wcel 2178   A.wral 2486   {crab 2490   _Vcvv 2776    C_ wss 3174   class class class wbr 4059   Se wse 4394
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189  ax-sep 4178
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rab 2495  df-v 2778  df-in 3180  df-ss 3187  df-br 4060  df-se 4398
This theorem is referenced by:  seeq1  4404
  Copyright terms: Public domain W3C validator