![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > exse | GIF version |
Description: Any relation on a set is set-like on it. (Contributed by Mario Carneiro, 22-Jun-2015.) |
Ref | Expression |
---|---|
exse | ⊢ (𝐴 ∈ 𝑉 → 𝑅 Se 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabexg 4161 | . . 3 ⊢ (𝐴 ∈ 𝑉 → {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑥} ∈ V) | |
2 | 1 | ralrimivw 2564 | . 2 ⊢ (𝐴 ∈ 𝑉 → ∀𝑥 ∈ 𝐴 {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑥} ∈ V) |
3 | df-se 4351 | . 2 ⊢ (𝑅 Se 𝐴 ↔ ∀𝑥 ∈ 𝐴 {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑥} ∈ V) | |
4 | 2, 3 | sylibr 134 | 1 ⊢ (𝐴 ∈ 𝑉 → 𝑅 Se 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2160 ∀wral 2468 {crab 2472 Vcvv 2752 class class class wbr 4018 Se wse 4347 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2171 ax-sep 4136 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ral 2473 df-rab 2477 df-v 2754 df-in 3150 df-ss 3157 df-se 4351 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |