ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exse GIF version

Theorem exse 4391
Description: Any relation on a set is set-like on it. (Contributed by Mario Carneiro, 22-Jun-2015.)
Assertion
Ref Expression
exse (𝐴𝑉𝑅 Se 𝐴)

Proof of Theorem exse
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rabexg 4195 . . 3 (𝐴𝑉 → {𝑦𝐴𝑦𝑅𝑥} ∈ V)
21ralrimivw 2581 . 2 (𝐴𝑉 → ∀𝑥𝐴 {𝑦𝐴𝑦𝑅𝑥} ∈ V)
3 df-se 4388 . 2 (𝑅 Se 𝐴 ↔ ∀𝑥𝐴 {𝑦𝐴𝑦𝑅𝑥} ∈ V)
42, 3sylibr 134 1 (𝐴𝑉𝑅 Se 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2177  wral 2485  {crab 2489  Vcvv 2773   class class class wbr 4051   Se wse 4384
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188  ax-sep 4170
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rab 2494  df-v 2775  df-in 3176  df-ss 3183  df-se 4388
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator