| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > tposf12 | Unicode version | ||
| Description: Condition for an injective transposition. (Contributed by NM, 10-Sep-2015.) |
| Ref | Expression |
|---|---|
| tposf12 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 110 |
. . . 4
| |
| 2 | relcnv 5105 |
. . . . . . 7
| |
| 3 | cnvf1o 6369 |
. . . . . . 7
| |
| 4 | f1of1 5570 |
. . . . . . 7
| |
| 5 | 2, 3, 4 | mp2b 8 |
. . . . . 6
|
| 6 | simpl 109 |
. . . . . . . 8
| |
| 7 | dfrel2 5178 |
. . . . . . . 8
| |
| 8 | 6, 7 | sylib 122 |
. . . . . . 7
|
| 9 | f1eq3 5527 |
. . . . . . 7
| |
| 10 | 8, 9 | syl 14 |
. . . . . 6
|
| 11 | 5, 10 | mpbii 148 |
. . . . 5
|
| 12 | f1dm 5535 |
. . . . . . . 8
| |
| 13 | 1, 12 | syl 14 |
. . . . . . 7
|
| 14 | 13 | cnveqd 4897 |
. . . . . 6
|
| 15 | mpteq1 4167 |
. . . . . 6
| |
| 16 | f1eq1 5525 |
. . . . . 6
| |
| 17 | 14, 15, 16 | 3syl 17 |
. . . . 5
|
| 18 | 11, 17 | mpbird 167 |
. . . 4
|
| 19 | f1co 5542 |
. . . 4
| |
| 20 | 1, 18, 19 | syl2anc 411 |
. . 3
|
| 21 | 12 | releqd 4802 |
. . . . 5
|
| 22 | 21 | biimparc 299 |
. . . 4
|
| 23 | dftpos2 6405 |
. . . 4
| |
| 24 | f1eq1 5525 |
. . . 4
| |
| 25 | 22, 23, 24 | 3syl 17 |
. . 3
|
| 26 | 20, 25 | mpbird 167 |
. 2
|
| 27 | 26 | ex 115 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4523 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-fv 5325 df-1st 6284 df-2nd 6285 df-tpos 6389 |
| This theorem is referenced by: tposf1o2 6414 |
| Copyright terms: Public domain | W3C validator |