| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > tposf12 | Unicode version | ||
| Description: Condition for an injective transposition. (Contributed by NM, 10-Sep-2015.) |
| Ref | Expression |
|---|---|
| tposf12 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 110 |
. . . 4
| |
| 2 | relcnv 5059 |
. . . . . . 7
| |
| 3 | cnvf1o 6310 |
. . . . . . 7
| |
| 4 | f1of1 5520 |
. . . . . . 7
| |
| 5 | 2, 3, 4 | mp2b 8 |
. . . . . 6
|
| 6 | simpl 109 |
. . . . . . . 8
| |
| 7 | dfrel2 5132 |
. . . . . . . 8
| |
| 8 | 6, 7 | sylib 122 |
. . . . . . 7
|
| 9 | f1eq3 5477 |
. . . . . . 7
| |
| 10 | 8, 9 | syl 14 |
. . . . . 6
|
| 11 | 5, 10 | mpbii 148 |
. . . . 5
|
| 12 | f1dm 5485 |
. . . . . . . 8
| |
| 13 | 1, 12 | syl 14 |
. . . . . . 7
|
| 14 | 13 | cnveqd 4853 |
. . . . . 6
|
| 15 | mpteq1 4127 |
. . . . . 6
| |
| 16 | f1eq1 5475 |
. . . . . 6
| |
| 17 | 14, 15, 16 | 3syl 17 |
. . . . 5
|
| 18 | 11, 17 | mpbird 167 |
. . . 4
|
| 19 | f1co 5492 |
. . . 4
| |
| 20 | 1, 18, 19 | syl2anc 411 |
. . 3
|
| 21 | 12 | releqd 4758 |
. . . . 5
|
| 22 | 21 | biimparc 299 |
. . . 4
|
| 23 | dftpos2 6346 |
. . . 4
| |
| 24 | f1eq1 5475 |
. . . 4
| |
| 25 | 22, 23, 24 | 3syl 17 |
. . 3
|
| 26 | 20, 25 | mpbird 167 |
. 2
|
| 27 | 26 | ex 115 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-nul 4169 ax-pow 4217 ax-pr 4252 ax-un 4479 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-ral 2488 df-rex 2489 df-rab 2492 df-v 2773 df-sbc 2998 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-br 4044 df-opab 4105 df-mpt 4106 df-id 4339 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-ima 4687 df-iota 5231 df-fun 5272 df-fn 5273 df-f 5274 df-f1 5275 df-fo 5276 df-f1o 5277 df-fv 5278 df-1st 6225 df-2nd 6226 df-tpos 6330 |
| This theorem is referenced by: tposf1o2 6355 |
| Copyright terms: Public domain | W3C validator |