ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tposf12 Unicode version

Theorem tposf12 6413
Description: Condition for an injective transposition. (Contributed by NM, 10-Sep-2015.)
Assertion
Ref Expression
tposf12  |-  ( Rel 
A  ->  ( F : A -1-1-> B  -> tpos  F : `' A -1-1-> B ) )

Proof of Theorem tposf12
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 simpr 110 . . . 4  |-  ( ( Rel  A  /\  F : A -1-1-> B )  ->  F : A -1-1-> B )
2 relcnv 5105 . . . . . . 7  |-  Rel  `' A
3 cnvf1o 6369 . . . . . . 7  |-  ( Rel  `' A  ->  ( x  e.  `' A  |->  U. `' { x } ) : `' A -1-1-onto-> `' `' A )
4 f1of1 5570 . . . . . . 7  |-  ( ( x  e.  `' A  |-> 
U. `' { x } ) : `' A
-1-1-onto-> `' `' A  ->  ( x  e.  `' A  |->  U. `' { x } ) : `' A -1-1-> `' `' A )
52, 3, 4mp2b 8 . . . . . 6  |-  ( x  e.  `' A  |->  U. `' { x } ) : `' A -1-1-> `' `' A
6 simpl 109 . . . . . . . 8  |-  ( ( Rel  A  /\  F : A -1-1-> B )  ->  Rel  A )
7 dfrel2 5178 . . . . . . . 8  |-  ( Rel 
A  <->  `' `' A  =  A
)
86, 7sylib 122 . . . . . . 7  |-  ( ( Rel  A  /\  F : A -1-1-> B )  ->  `' `' A  =  A
)
9 f1eq3 5527 . . . . . . 7  |-  ( `' `' A  =  A  ->  ( ( x  e.  `' A  |->  U. `' { x } ) : `' A -1-1-> `' `' A  <->  ( x  e.  `' A  |->  U. `' { x } ) : `' A -1-1-> A
) )
108, 9syl 14 . . . . . 6  |-  ( ( Rel  A  /\  F : A -1-1-> B )  -> 
( ( x  e.  `' A  |->  U. `' { x } ) : `' A -1-1-> `' `' A  <->  ( x  e.  `' A  |->  U. `' { x } ) : `' A -1-1-> A
) )
115, 10mpbii 148 . . . . 5  |-  ( ( Rel  A  /\  F : A -1-1-> B )  -> 
( x  e.  `' A  |->  U. `' { x } ) : `' A -1-1-> A )
12 f1dm 5535 . . . . . . . 8  |-  ( F : A -1-1-> B  ->  dom  F  =  A )
131, 12syl 14 . . . . . . 7  |-  ( ( Rel  A  /\  F : A -1-1-> B )  ->  dom  F  =  A )
1413cnveqd 4897 . . . . . 6  |-  ( ( Rel  A  /\  F : A -1-1-> B )  ->  `' dom  F  =  `' A )
15 mpteq1 4167 . . . . . 6  |-  ( `' dom  F  =  `' A  ->  ( x  e.  `' dom  F  |->  U. `' { x } )  =  ( x  e.  `' A  |->  U. `' { x } ) )
16 f1eq1 5525 . . . . . 6  |-  ( ( x  e.  `' dom  F 
|->  U. `' { x } )  =  ( x  e.  `' A  |-> 
U. `' { x } )  ->  (
( x  e.  `' dom  F  |->  U. `' { x } ) : `' A -1-1-> A  <->  ( x  e.  `' A  |->  U. `' { x } ) : `' A -1-1-> A
) )
1714, 15, 163syl 17 . . . . 5  |-  ( ( Rel  A  /\  F : A -1-1-> B )  -> 
( ( x  e.  `' dom  F  |->  U. `' { x } ) : `' A -1-1-> A  <->  ( x  e.  `' A  |-> 
U. `' { x } ) : `' A -1-1-> A ) )
1811, 17mpbird 167 . . . 4  |-  ( ( Rel  A  /\  F : A -1-1-> B )  -> 
( x  e.  `' dom  F  |->  U. `' { x } ) : `' A -1-1-> A )
19 f1co 5542 . . . 4  |-  ( ( F : A -1-1-> B  /\  ( x  e.  `' dom  F  |->  U. `' { x } ) : `' A -1-1-> A )  -> 
( F  o.  (
x  e.  `' dom  F 
|->  U. `' { x } ) ) : `' A -1-1-> B )
201, 18, 19syl2anc 411 . . 3  |-  ( ( Rel  A  /\  F : A -1-1-> B )  -> 
( F  o.  (
x  e.  `' dom  F 
|->  U. `' { x } ) ) : `' A -1-1-> B )
2112releqd 4802 . . . . 5  |-  ( F : A -1-1-> B  -> 
( Rel  dom  F  <->  Rel  A ) )
2221biimparc 299 . . . 4  |-  ( ( Rel  A  /\  F : A -1-1-> B )  ->  Rel  dom  F )
23 dftpos2 6405 . . . 4  |-  ( Rel 
dom  F  -> tpos  F  =  ( F  o.  (
x  e.  `' dom  F 
|->  U. `' { x } ) ) )
24 f1eq1 5525 . . . 4  |-  (tpos  F  =  ( F  o.  ( x  e.  `' dom  F  |->  U. `' { x } ) )  -> 
(tpos  F : `' A -1-1-> B  <->  ( F  o.  ( x  e.  `' dom  F  |->  U. `' { x } ) ) : `' A -1-1-> B ) )
2522, 23, 243syl 17 . . 3  |-  ( ( Rel  A  /\  F : A -1-1-> B )  -> 
(tpos  F : `' A -1-1-> B  <->  ( F  o.  ( x  e.  `' dom  F  |->  U. `' { x } ) ) : `' A -1-1-> B ) )
2620, 25mpbird 167 . 2  |-  ( ( Rel  A  /\  F : A -1-1-> B )  -> tpos  F : `' A -1-1-> B
)
2726ex 115 1  |-  ( Rel 
A  ->  ( F : A -1-1-> B  -> tpos  F : `' A -1-1-> B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1395   {csn 3666   U.cuni 3887    |-> cmpt 4144   `'ccnv 4717   dom cdm 4718    o. ccom 4722   Rel wrel 4723   -1-1->wf1 5314   -1-1-onto->wf1o 5316  tpos ctpos 6388
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-1st 6284  df-2nd 6285  df-tpos 6389
This theorem is referenced by:  tposf1o2  6414
  Copyright terms: Public domain W3C validator