ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1eq3 GIF version

Theorem f1eq3 5390
Description: Equality theorem for one-to-one functions. (Contributed by NM, 10-Feb-1997.)
Assertion
Ref Expression
f1eq3 (𝐴 = 𝐵 → (𝐹:𝐶1-1𝐴𝐹:𝐶1-1𝐵))

Proof of Theorem f1eq3
StepHypRef Expression
1 feq3 5322 . . 3 (𝐴 = 𝐵 → (𝐹:𝐶𝐴𝐹:𝐶𝐵))
21anbi1d 461 . 2 (𝐴 = 𝐵 → ((𝐹:𝐶𝐴 ∧ Fun 𝐹) ↔ (𝐹:𝐶𝐵 ∧ Fun 𝐹)))
3 df-f1 5193 . 2 (𝐹:𝐶1-1𝐴 ↔ (𝐹:𝐶𝐴 ∧ Fun 𝐹))
4 df-f1 5193 . 2 (𝐹:𝐶1-1𝐵 ↔ (𝐹:𝐶𝐵 ∧ Fun 𝐹))
52, 3, 43bitr4g 222 1 (𝐴 = 𝐵 → (𝐹:𝐶1-1𝐴𝐹:𝐶1-1𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1343  ccnv 4603  Fun wfun 5182  wf 5184  1-1wf1 5185
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-11 1494  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-in 3122  df-ss 3129  df-f 5192  df-f1 5193
This theorem is referenced by:  f1oeq3  5423  f1eq123d  5425  tposf12  6237  brdomg  6714
  Copyright terms: Public domain W3C validator