Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > f1eq3 | GIF version |
Description: Equality theorem for one-to-one functions. (Contributed by NM, 10-Feb-1997.) |
Ref | Expression |
---|---|
f1eq3 | ⊢ (𝐴 = 𝐵 → (𝐹:𝐶–1-1→𝐴 ↔ 𝐹:𝐶–1-1→𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | feq3 5322 | . . 3 ⊢ (𝐴 = 𝐵 → (𝐹:𝐶⟶𝐴 ↔ 𝐹:𝐶⟶𝐵)) | |
2 | 1 | anbi1d 461 | . 2 ⊢ (𝐴 = 𝐵 → ((𝐹:𝐶⟶𝐴 ∧ Fun ◡𝐹) ↔ (𝐹:𝐶⟶𝐵 ∧ Fun ◡𝐹))) |
3 | df-f1 5193 | . 2 ⊢ (𝐹:𝐶–1-1→𝐴 ↔ (𝐹:𝐶⟶𝐴 ∧ Fun ◡𝐹)) | |
4 | df-f1 5193 | . 2 ⊢ (𝐹:𝐶–1-1→𝐵 ↔ (𝐹:𝐶⟶𝐵 ∧ Fun ◡𝐹)) | |
5 | 2, 3, 4 | 3bitr4g 222 | 1 ⊢ (𝐴 = 𝐵 → (𝐹:𝐶–1-1→𝐴 ↔ 𝐹:𝐶–1-1→𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 = wceq 1343 ◡ccnv 4603 Fun wfun 5182 ⟶wf 5184 –1-1→wf1 5185 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-11 1494 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-in 3122 df-ss 3129 df-f 5192 df-f1 5193 |
This theorem is referenced by: f1oeq3 5423 f1eq123d 5425 tposf12 6237 brdomg 6714 |
Copyright terms: Public domain | W3C validator |