ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1eq3 GIF version

Theorem f1eq3 5472
Description: Equality theorem for one-to-one functions. (Contributed by NM, 10-Feb-1997.)
Assertion
Ref Expression
f1eq3 (𝐴 = 𝐵 → (𝐹:𝐶1-1𝐴𝐹:𝐶1-1𝐵))

Proof of Theorem f1eq3
StepHypRef Expression
1 feq3 5404 . . 3 (𝐴 = 𝐵 → (𝐹:𝐶𝐴𝐹:𝐶𝐵))
21anbi1d 465 . 2 (𝐴 = 𝐵 → ((𝐹:𝐶𝐴 ∧ Fun 𝐹) ↔ (𝐹:𝐶𝐵 ∧ Fun 𝐹)))
3 df-f1 5273 . 2 (𝐹:𝐶1-1𝐴 ↔ (𝐹:𝐶𝐴 ∧ Fun 𝐹))
4 df-f1 5273 . 2 (𝐹:𝐶1-1𝐵 ↔ (𝐹:𝐶𝐵 ∧ Fun 𝐹))
52, 3, 43bitr4g 223 1 (𝐴 = 𝐵 → (𝐹:𝐶1-1𝐴𝐹:𝐶1-1𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1372  ccnv 4672  Fun wfun 5262  wf 5264  1-1wf1 5265
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-11 1528  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-in 3171  df-ss 3178  df-f 5272  df-f1 5273
This theorem is referenced by:  f1oeq3  5506  f1eq123d  5508  tposf12  6345  brdomg  6825
  Copyright terms: Public domain W3C validator