ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nff1 Unicode version

Theorem nff1 5501
Description: Bound-variable hypothesis builder for a one-to-one function. (Contributed by NM, 16-May-2004.)
Hypotheses
Ref Expression
nff1.1  |-  F/_ x F
nff1.2  |-  F/_ x A
nff1.3  |-  F/_ x B
Assertion
Ref Expression
nff1  |-  F/ x  F : A -1-1-> B

Proof of Theorem nff1
StepHypRef Expression
1 df-f1 5295 . 2  |-  ( F : A -1-1-> B  <->  ( F : A --> B  /\  Fun  `' F ) )
2 nff1.1 . . . 4  |-  F/_ x F
3 nff1.2 . . . 4  |-  F/_ x A
4 nff1.3 . . . 4  |-  F/_ x B
52, 3, 4nff 5442 . . 3  |-  F/ x  F : A --> B
62nfcnv 4875 . . . 4  |-  F/_ x `' F
76nffun 5313 . . 3  |-  F/ x Fun  `' F
85, 7nfan 1589 . 2  |-  F/ x
( F : A --> B  /\  Fun  `' F
)
91, 8nfxfr 1498 1  |-  F/ x  F : A -1-1-> B
Colors of variables: wff set class
Syntax hints:    /\ wa 104   F/wnf 1484   F/_wnfc 2337   `'ccnv 4692   Fun wfun 5284   -->wf 5286   -1-1->wf1 5287
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-v 2778  df-un 3178  df-in 3180  df-ss 3187  df-sn 3649  df-pr 3650  df-op 3652  df-br 4060  df-opab 4122  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295
This theorem is referenced by:  nff1o  5542
  Copyright terms: Public domain W3C validator