ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nff1 Unicode version

Theorem nff1 5457
Description: Bound-variable hypothesis builder for a one-to-one function. (Contributed by NM, 16-May-2004.)
Hypotheses
Ref Expression
nff1.1  |-  F/_ x F
nff1.2  |-  F/_ x A
nff1.3  |-  F/_ x B
Assertion
Ref Expression
nff1  |-  F/ x  F : A -1-1-> B

Proof of Theorem nff1
StepHypRef Expression
1 df-f1 5259 . 2  |-  ( F : A -1-1-> B  <->  ( F : A --> B  /\  Fun  `' F ) )
2 nff1.1 . . . 4  |-  F/_ x F
3 nff1.2 . . . 4  |-  F/_ x A
4 nff1.3 . . . 4  |-  F/_ x B
52, 3, 4nff 5400 . . 3  |-  F/ x  F : A --> B
62nfcnv 4841 . . . 4  |-  F/_ x `' F
76nffun 5277 . . 3  |-  F/ x Fun  `' F
85, 7nfan 1576 . 2  |-  F/ x
( F : A --> B  /\  Fun  `' F
)
91, 8nfxfr 1485 1  |-  F/ x  F : A -1-1-> B
Colors of variables: wff set class
Syntax hints:    /\ wa 104   F/wnf 1471   F/_wnfc 2323   `'ccnv 4658   Fun wfun 5248   -->wf 5250   -1-1->wf1 5251
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-sn 3624  df-pr 3625  df-op 3627  df-br 4030  df-opab 4091  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259
This theorem is referenced by:  nff1o  5498
  Copyright terms: Public domain W3C validator