ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ennnfonelemrnh Unicode version

Theorem ennnfonelemrnh 12156
Description: Lemma for ennnfone 12165. A consequence of ennnfonelemss 12150. (Contributed by Jim Kingdon, 16-Jul-2023.)
Hypotheses
Ref Expression
ennnfonelemh.dceq  |-  ( ph  ->  A. x  e.  A  A. y  e.  A DECID  x  =  y )
ennnfonelemh.f  |-  ( ph  ->  F : om -onto-> A
)
ennnfonelemh.ne  |-  ( ph  ->  A. n  e.  om  E. k  e.  om  A. j  e.  suc  n ( F `  k )  =/=  ( F `  j ) )
ennnfonelemh.g  |-  G  =  ( x  e.  ( A  ^pm  om ) ,  y  e.  om  |->  if ( ( F `  y )  e.  ( F " y ) ,  x ,  ( x  u.  { <. dom  x ,  ( F `
 y ) >. } ) ) )
ennnfonelemh.n  |-  N  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 )
ennnfonelemh.j  |-  J  =  ( x  e.  NN0  |->  if ( x  =  0 ,  (/) ,  ( `' N `  ( x  -  1 ) ) ) )
ennnfonelemh.h  |-  H  =  seq 0 ( G ,  J )
ennnfonelemrnh.x  |-  ( ph  ->  X  e.  ran  H
)
ennnfonelemrnh.y  |-  ( ph  ->  Y  e.  ran  H
)
Assertion
Ref Expression
ennnfonelemrnh  |-  ( ph  ->  ( X  C_  Y  \/  Y  C_  X ) )
Distinct variable groups:    A, j, x, y    j, F, k, n    x, F, y   
j, G    x, H, y    j, J    x, N, y    x, X, y    x, Y, y    ph, j, x, y
Allowed substitution hints:    ph( k, n)    A( k, n)    G( x, y, k, n)    H( j,
k, n)    J( x, y, k, n)    N( j,
k, n)    X( j,
k, n)    Y( j,
k, n)

Proof of Theorem ennnfonelemrnh
Dummy variables  s  t are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ennnfonelemh.dceq . . . . . 6  |-  ( ph  ->  A. x  e.  A  A. y  e.  A DECID  x  =  y )
2 ennnfonelemh.f . . . . . 6  |-  ( ph  ->  F : om -onto-> A
)
3 ennnfonelemh.ne . . . . . 6  |-  ( ph  ->  A. n  e.  om  E. k  e.  om  A. j  e.  suc  n ( F `  k )  =/=  ( F `  j ) )
4 ennnfonelemh.g . . . . . 6  |-  G  =  ( x  e.  ( A  ^pm  om ) ,  y  e.  om  |->  if ( ( F `  y )  e.  ( F " y ) ,  x ,  ( x  u.  { <. dom  x ,  ( F `
 y ) >. } ) ) )
5 ennnfonelemh.n . . . . . 6  |-  N  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 )
6 ennnfonelemh.j . . . . . 6  |-  J  =  ( x  e.  NN0  |->  if ( x  =  0 ,  (/) ,  ( `' N `  ( x  -  1 ) ) ) )
7 ennnfonelemh.h . . . . . 6  |-  H  =  seq 0 ( G ,  J )
81, 2, 3, 4, 5, 6, 7ennnfonelemh 12144 . . . . 5  |-  ( ph  ->  H : NN0 --> ( A 
^pm  om ) )
98ffund 5323 . . . 4  |-  ( ph  ->  Fun  H )
10 ennnfonelemrnh.x . . . 4  |-  ( ph  ->  X  e.  ran  H
)
11 elrnrexdm 5606 . . . 4  |-  ( Fun 
H  ->  ( X  e.  ran  H  ->  E. s  e.  dom  H  X  =  ( H `  s
) ) )
129, 10, 11sylc 62 . . 3  |-  ( ph  ->  E. s  e.  dom  H  X  =  ( H `
 s ) )
138fdmd 5326 . . . 4  |-  ( ph  ->  dom  H  =  NN0 )
1413rexeqdv 2659 . . 3  |-  ( ph  ->  ( E. s  e. 
dom  H  X  =  ( H `  s )  <->  E. s  e.  NN0  X  =  ( H `  s ) ) )
1512, 14mpbid 146 . 2  |-  ( ph  ->  E. s  e.  NN0  X  =  ( H `  s ) )
16 ennnfonelemrnh.y . . . . . 6  |-  ( ph  ->  Y  e.  ran  H
)
17 elrnrexdm 5606 . . . . . 6  |-  ( Fun 
H  ->  ( Y  e.  ran  H  ->  E. t  e.  dom  H  Y  =  ( H `  t
) ) )
189, 16, 17sylc 62 . . . . 5  |-  ( ph  ->  E. t  e.  dom  H  Y  =  ( H `
 t ) )
1913rexeqdv 2659 . . . . 5  |-  ( ph  ->  ( E. t  e. 
dom  H  Y  =  ( H `  t )  <->  E. t  e.  NN0  Y  =  ( H `  t ) ) )
2018, 19mpbid 146 . . . 4  |-  ( ph  ->  E. t  e.  NN0  Y  =  ( H `  t ) )
2120adantr 274 . . 3  |-  ( (
ph  /\  ( s  e.  NN0  /\  X  =  ( H `  s
) ) )  ->  E. t  e.  NN0  Y  =  ( H `  t ) )
22 simplrl 525 . . . . . . 7  |-  ( ( ( ph  /\  (
s  e.  NN0  /\  X  =  ( H `  s ) ) )  /\  ( t  e. 
NN0  /\  Y  =  ( H `  t ) ) )  ->  s  e.  NN0 )
2322nn0zd 9284 . . . . . 6  |-  ( ( ( ph  /\  (
s  e.  NN0  /\  X  =  ( H `  s ) ) )  /\  ( t  e. 
NN0  /\  Y  =  ( H `  t ) ) )  ->  s  e.  ZZ )
24 simprl 521 . . . . . . 7  |-  ( ( ( ph  /\  (
s  e.  NN0  /\  X  =  ( H `  s ) ) )  /\  ( t  e. 
NN0  /\  Y  =  ( H `  t ) ) )  ->  t  e.  NN0 )
2524nn0zd 9284 . . . . . 6  |-  ( ( ( ph  /\  (
s  e.  NN0  /\  X  =  ( H `  s ) ) )  /\  ( t  e. 
NN0  /\  Y  =  ( H `  t ) ) )  ->  t  e.  ZZ )
26 zletric 9211 . . . . . 6  |-  ( ( s  e.  ZZ  /\  t  e.  ZZ )  ->  ( s  <_  t  \/  t  <_  s ) )
2723, 25, 26syl2anc 409 . . . . 5  |-  ( ( ( ph  /\  (
s  e.  NN0  /\  X  =  ( H `  s ) ) )  /\  ( t  e. 
NN0  /\  Y  =  ( H `  t ) ) )  ->  (
s  <_  t  \/  t  <_  s ) )
281ad3antrrr 484 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( s  e.  NN0  /\  X  =  ( H `
 s ) ) )  /\  ( t  e.  NN0  /\  Y  =  ( H `  t
) ) )  /\  s  <_  t )  ->  A. x  e.  A  A. y  e.  A DECID  x  =  y )
292ad3antrrr 484 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( s  e.  NN0  /\  X  =  ( H `
 s ) ) )  /\  ( t  e.  NN0  /\  Y  =  ( H `  t
) ) )  /\  s  <_  t )  ->  F : om -onto-> A )
303ad3antrrr 484 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( s  e.  NN0  /\  X  =  ( H `
 s ) ) )  /\  ( t  e.  NN0  /\  Y  =  ( H `  t
) ) )  /\  s  <_  t )  ->  A. n  e.  om  E. k  e.  om  A. j  e.  suc  n ( F `  k )  =/=  ( F `  j ) )
3122adantr 274 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( s  e.  NN0  /\  X  =  ( H `
 s ) ) )  /\  ( t  e.  NN0  /\  Y  =  ( H `  t
) ) )  /\  s  <_  t )  -> 
s  e.  NN0 )
32 simplrl 525 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( s  e.  NN0  /\  X  =  ( H `
 s ) ) )  /\  ( t  e.  NN0  /\  Y  =  ( H `  t
) ) )  /\  s  <_  t )  -> 
t  e.  NN0 )
33 simpr 109 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( s  e.  NN0  /\  X  =  ( H `
 s ) ) )  /\  ( t  e.  NN0  /\  Y  =  ( H `  t
) ) )  /\  s  <_  t )  -> 
s  <_  t )
3428, 29, 30, 4, 5, 6, 7, 31, 32, 33ennnfoneleminc 12151 . . . . . . 7  |-  ( ( ( ( ph  /\  ( s  e.  NN0  /\  X  =  ( H `
 s ) ) )  /\  ( t  e.  NN0  /\  Y  =  ( H `  t
) ) )  /\  s  <_  t )  -> 
( H `  s
)  C_  ( H `  t ) )
3534ex 114 . . . . . 6  |-  ( ( ( ph  /\  (
s  e.  NN0  /\  X  =  ( H `  s ) ) )  /\  ( t  e. 
NN0  /\  Y  =  ( H `  t ) ) )  ->  (
s  <_  t  ->  ( H `  s ) 
C_  ( H `  t ) ) )
361ad3antrrr 484 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( s  e.  NN0  /\  X  =  ( H `
 s ) ) )  /\  ( t  e.  NN0  /\  Y  =  ( H `  t
) ) )  /\  t  <_  s )  ->  A. x  e.  A  A. y  e.  A DECID  x  =  y )
372ad3antrrr 484 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( s  e.  NN0  /\  X  =  ( H `
 s ) ) )  /\  ( t  e.  NN0  /\  Y  =  ( H `  t
) ) )  /\  t  <_  s )  ->  F : om -onto-> A )
383ad3antrrr 484 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( s  e.  NN0  /\  X  =  ( H `
 s ) ) )  /\  ( t  e.  NN0  /\  Y  =  ( H `  t
) ) )  /\  t  <_  s )  ->  A. n  e.  om  E. k  e.  om  A. j  e.  suc  n ( F `  k )  =/=  ( F `  j ) )
39 simplrl 525 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( s  e.  NN0  /\  X  =  ( H `
 s ) ) )  /\  ( t  e.  NN0  /\  Y  =  ( H `  t
) ) )  /\  t  <_  s )  -> 
t  e.  NN0 )
4022adantr 274 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( s  e.  NN0  /\  X  =  ( H `
 s ) ) )  /\  ( t  e.  NN0  /\  Y  =  ( H `  t
) ) )  /\  t  <_  s )  -> 
s  e.  NN0 )
41 simpr 109 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( s  e.  NN0  /\  X  =  ( H `
 s ) ) )  /\  ( t  e.  NN0  /\  Y  =  ( H `  t
) ) )  /\  t  <_  s )  -> 
t  <_  s )
4236, 37, 38, 4, 5, 6, 7, 39, 40, 41ennnfoneleminc 12151 . . . . . . 7  |-  ( ( ( ( ph  /\  ( s  e.  NN0  /\  X  =  ( H `
 s ) ) )  /\  ( t  e.  NN0  /\  Y  =  ( H `  t
) ) )  /\  t  <_  s )  -> 
( H `  t
)  C_  ( H `  s ) )
4342ex 114 . . . . . 6  |-  ( ( ( ph  /\  (
s  e.  NN0  /\  X  =  ( H `  s ) ) )  /\  ( t  e. 
NN0  /\  Y  =  ( H `  t ) ) )  ->  (
t  <_  s  ->  ( H `  t ) 
C_  ( H `  s ) ) )
4435, 43orim12d 776 . . . . 5  |-  ( ( ( ph  /\  (
s  e.  NN0  /\  X  =  ( H `  s ) ) )  /\  ( t  e. 
NN0  /\  Y  =  ( H `  t ) ) )  ->  (
( s  <_  t  \/  t  <_  s )  ->  ( ( H `
 s )  C_  ( H `  t )  \/  ( H `  t )  C_  ( H `  s )
) ) )
4527, 44mpd 13 . . . 4  |-  ( ( ( ph  /\  (
s  e.  NN0  /\  X  =  ( H `  s ) ) )  /\  ( t  e. 
NN0  /\  Y  =  ( H `  t ) ) )  ->  (
( H `  s
)  C_  ( H `  t )  \/  ( H `  t )  C_  ( H `  s
) ) )
46 simplrr 526 . . . . . 6  |-  ( ( ( ph  /\  (
s  e.  NN0  /\  X  =  ( H `  s ) ) )  /\  ( t  e. 
NN0  /\  Y  =  ( H `  t ) ) )  ->  X  =  ( H `  s ) )
47 simprr 522 . . . . . 6  |-  ( ( ( ph  /\  (
s  e.  NN0  /\  X  =  ( H `  s ) ) )  /\  ( t  e. 
NN0  /\  Y  =  ( H `  t ) ) )  ->  Y  =  ( H `  t ) )
4846, 47sseq12d 3159 . . . . 5  |-  ( ( ( ph  /\  (
s  e.  NN0  /\  X  =  ( H `  s ) ) )  /\  ( t  e. 
NN0  /\  Y  =  ( H `  t ) ) )  ->  ( X  C_  Y  <->  ( H `  s )  C_  ( H `  t )
) )
4947, 46sseq12d 3159 . . . . 5  |-  ( ( ( ph  /\  (
s  e.  NN0  /\  X  =  ( H `  s ) ) )  /\  ( t  e. 
NN0  /\  Y  =  ( H `  t ) ) )  ->  ( Y  C_  X  <->  ( H `  t )  C_  ( H `  s )
) )
5048, 49orbi12d 783 . . . 4  |-  ( ( ( ph  /\  (
s  e.  NN0  /\  X  =  ( H `  s ) ) )  /\  ( t  e. 
NN0  /\  Y  =  ( H `  t ) ) )  ->  (
( X  C_  Y  \/  Y  C_  X )  <-> 
( ( H `  s )  C_  ( H `  t )  \/  ( H `  t
)  C_  ( H `  s ) ) ) )
5145, 50mpbird 166 . . 3  |-  ( ( ( ph  /\  (
s  e.  NN0  /\  X  =  ( H `  s ) ) )  /\  ( t  e. 
NN0  /\  Y  =  ( H `  t ) ) )  ->  ( X  C_  Y  \/  Y  C_  X ) )
5221, 51rexlimddv 2579 . 2  |-  ( (
ph  /\  ( s  e.  NN0  /\  X  =  ( H `  s
) ) )  -> 
( X  C_  Y  \/  Y  C_  X ) )
5315, 52rexlimddv 2579 1  |-  ( ph  ->  ( X  C_  Y  \/  Y  C_  X ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    \/ wo 698  DECID wdc 820    = wceq 1335    e. wcel 2128    =/= wne 2327   A.wral 2435   E.wrex 2436    u. cun 3100    C_ wss 3102   (/)c0 3394   ifcif 3505   {csn 3560   <.cop 3563   class class class wbr 3965    |-> cmpt 4025   suc csuc 4325   omcom 4549   `'ccnv 4585   dom cdm 4586   ran crn 4587   "cima 4589   Fun wfun 5164   -onto->wfo 5168   ` cfv 5170  (class class class)co 5824    e. cmpo 5826  freccfrec 6337    ^pm cpm 6594   0cc0 7732   1c1 7733    + caddc 7735    <_ cle 7913    - cmin 8046   NN0cn0 9090   ZZcz 9167    seqcseq 10344
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-coll 4079  ax-sep 4082  ax-nul 4090  ax-pow 4135  ax-pr 4169  ax-un 4393  ax-setind 4496  ax-iinf 4547  ax-cnex 7823  ax-resscn 7824  ax-1cn 7825  ax-1re 7826  ax-icn 7827  ax-addcl 7828  ax-addrcl 7829  ax-mulcl 7830  ax-addcom 7832  ax-addass 7834  ax-distr 7836  ax-i2m1 7837  ax-0lt1 7838  ax-0id 7840  ax-rnegex 7841  ax-cnre 7843  ax-pre-ltirr 7844  ax-pre-ltwlin 7845  ax-pre-lttrn 7846  ax-pre-ltadd 7848
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-nel 2423  df-ral 2440  df-rex 2441  df-reu 2442  df-rab 2444  df-v 2714  df-sbc 2938  df-csb 3032  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3395  df-if 3506  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-int 3808  df-iun 3851  df-br 3966  df-opab 4026  df-mpt 4027  df-tr 4063  df-id 4253  df-iord 4326  df-on 4328  df-ilim 4329  df-suc 4331  df-iom 4550  df-xp 4592  df-rel 4593  df-cnv 4594  df-co 4595  df-dm 4596  df-rn 4597  df-res 4598  df-ima 4599  df-iota 5135  df-fun 5172  df-fn 5173  df-f 5174  df-f1 5175  df-fo 5176  df-f1o 5177  df-fv 5178  df-riota 5780  df-ov 5827  df-oprab 5828  df-mpo 5829  df-1st 6088  df-2nd 6089  df-recs 6252  df-frec 6338  df-pm 6596  df-pnf 7914  df-mnf 7915  df-xr 7916  df-ltxr 7917  df-le 7918  df-sub 8048  df-neg 8049  df-inn 8834  df-n0 9091  df-z 9168  df-uz 9440  df-seqfrec 10345
This theorem is referenced by:  ennnfonelemfun  12157  ennnfonelemf1  12158
  Copyright terms: Public domain W3C validator