ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ennnfonelemrnh Unicode version

Theorem ennnfonelemrnh 12400
Description: Lemma for ennnfone 12409. A consequence of ennnfonelemss 12394. (Contributed by Jim Kingdon, 16-Jul-2023.)
Hypotheses
Ref Expression
ennnfonelemh.dceq  |-  ( ph  ->  A. x  e.  A  A. y  e.  A DECID  x  =  y )
ennnfonelemh.f  |-  ( ph  ->  F : om -onto-> A
)
ennnfonelemh.ne  |-  ( ph  ->  A. n  e.  om  E. k  e.  om  A. j  e.  suc  n ( F `  k )  =/=  ( F `  j ) )
ennnfonelemh.g  |-  G  =  ( x  e.  ( A  ^pm  om ) ,  y  e.  om  |->  if ( ( F `  y )  e.  ( F " y ) ,  x ,  ( x  u.  { <. dom  x ,  ( F `
 y ) >. } ) ) )
ennnfonelemh.n  |-  N  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 )
ennnfonelemh.j  |-  J  =  ( x  e.  NN0  |->  if ( x  =  0 ,  (/) ,  ( `' N `  ( x  -  1 ) ) ) )
ennnfonelemh.h  |-  H  =  seq 0 ( G ,  J )
ennnfonelemrnh.x  |-  ( ph  ->  X  e.  ran  H
)
ennnfonelemrnh.y  |-  ( ph  ->  Y  e.  ran  H
)
Assertion
Ref Expression
ennnfonelemrnh  |-  ( ph  ->  ( X  C_  Y  \/  Y  C_  X ) )
Distinct variable groups:    A, j, x, y    j, F, k, n    x, F, y   
j, G    x, H, y    j, J    x, N, y    x, X, y    x, Y, y    ph, j, x, y
Allowed substitution hints:    ph( k, n)    A( k, n)    G( x, y, k, n)    H( j,
k, n)    J( x, y, k, n)    N( j,
k, n)    X( j,
k, n)    Y( j,
k, n)

Proof of Theorem ennnfonelemrnh
Dummy variables  s  t are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ennnfonelemh.dceq . . . . . 6  |-  ( ph  ->  A. x  e.  A  A. y  e.  A DECID  x  =  y )
2 ennnfonelemh.f . . . . . 6  |-  ( ph  ->  F : om -onto-> A
)
3 ennnfonelemh.ne . . . . . 6  |-  ( ph  ->  A. n  e.  om  E. k  e.  om  A. j  e.  suc  n ( F `  k )  =/=  ( F `  j ) )
4 ennnfonelemh.g . . . . . 6  |-  G  =  ( x  e.  ( A  ^pm  om ) ,  y  e.  om  |->  if ( ( F `  y )  e.  ( F " y ) ,  x ,  ( x  u.  { <. dom  x ,  ( F `
 y ) >. } ) ) )
5 ennnfonelemh.n . . . . . 6  |-  N  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 )
6 ennnfonelemh.j . . . . . 6  |-  J  =  ( x  e.  NN0  |->  if ( x  =  0 ,  (/) ,  ( `' N `  ( x  -  1 ) ) ) )
7 ennnfonelemh.h . . . . . 6  |-  H  =  seq 0 ( G ,  J )
81, 2, 3, 4, 5, 6, 7ennnfonelemh 12388 . . . . 5  |-  ( ph  ->  H : NN0 --> ( A 
^pm  om ) )
98ffund 5365 . . . 4  |-  ( ph  ->  Fun  H )
10 ennnfonelemrnh.x . . . 4  |-  ( ph  ->  X  e.  ran  H
)
11 elrnrexdm 5651 . . . 4  |-  ( Fun 
H  ->  ( X  e.  ran  H  ->  E. s  e.  dom  H  X  =  ( H `  s
) ) )
129, 10, 11sylc 62 . . 3  |-  ( ph  ->  E. s  e.  dom  H  X  =  ( H `
 s ) )
138fdmd 5368 . . . 4  |-  ( ph  ->  dom  H  =  NN0 )
1413rexeqdv 2679 . . 3  |-  ( ph  ->  ( E. s  e. 
dom  H  X  =  ( H `  s )  <->  E. s  e.  NN0  X  =  ( H `  s ) ) )
1512, 14mpbid 147 . 2  |-  ( ph  ->  E. s  e.  NN0  X  =  ( H `  s ) )
16 ennnfonelemrnh.y . . . . . 6  |-  ( ph  ->  Y  e.  ran  H
)
17 elrnrexdm 5651 . . . . . 6  |-  ( Fun 
H  ->  ( Y  e.  ran  H  ->  E. t  e.  dom  H  Y  =  ( H `  t
) ) )
189, 16, 17sylc 62 . . . . 5  |-  ( ph  ->  E. t  e.  dom  H  Y  =  ( H `
 t ) )
1913rexeqdv 2679 . . . . 5  |-  ( ph  ->  ( E. t  e. 
dom  H  Y  =  ( H `  t )  <->  E. t  e.  NN0  Y  =  ( H `  t ) ) )
2018, 19mpbid 147 . . . 4  |-  ( ph  ->  E. t  e.  NN0  Y  =  ( H `  t ) )
2120adantr 276 . . 3  |-  ( (
ph  /\  ( s  e.  NN0  /\  X  =  ( H `  s
) ) )  ->  E. t  e.  NN0  Y  =  ( H `  t ) )
22 simplrl 535 . . . . . . 7  |-  ( ( ( ph  /\  (
s  e.  NN0  /\  X  =  ( H `  s ) ) )  /\  ( t  e. 
NN0  /\  Y  =  ( H `  t ) ) )  ->  s  e.  NN0 )
2322nn0zd 9362 . . . . . 6  |-  ( ( ( ph  /\  (
s  e.  NN0  /\  X  =  ( H `  s ) ) )  /\  ( t  e. 
NN0  /\  Y  =  ( H `  t ) ) )  ->  s  e.  ZZ )
24 simprl 529 . . . . . . 7  |-  ( ( ( ph  /\  (
s  e.  NN0  /\  X  =  ( H `  s ) ) )  /\  ( t  e. 
NN0  /\  Y  =  ( H `  t ) ) )  ->  t  e.  NN0 )
2524nn0zd 9362 . . . . . 6  |-  ( ( ( ph  /\  (
s  e.  NN0  /\  X  =  ( H `  s ) ) )  /\  ( t  e. 
NN0  /\  Y  =  ( H `  t ) ) )  ->  t  e.  ZZ )
26 zletric 9286 . . . . . 6  |-  ( ( s  e.  ZZ  /\  t  e.  ZZ )  ->  ( s  <_  t  \/  t  <_  s ) )
2723, 25, 26syl2anc 411 . . . . 5  |-  ( ( ( ph  /\  (
s  e.  NN0  /\  X  =  ( H `  s ) ) )  /\  ( t  e. 
NN0  /\  Y  =  ( H `  t ) ) )  ->  (
s  <_  t  \/  t  <_  s ) )
281ad3antrrr 492 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( s  e.  NN0  /\  X  =  ( H `
 s ) ) )  /\  ( t  e.  NN0  /\  Y  =  ( H `  t
) ) )  /\  s  <_  t )  ->  A. x  e.  A  A. y  e.  A DECID  x  =  y )
292ad3antrrr 492 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( s  e.  NN0  /\  X  =  ( H `
 s ) ) )  /\  ( t  e.  NN0  /\  Y  =  ( H `  t
) ) )  /\  s  <_  t )  ->  F : om -onto-> A )
303ad3antrrr 492 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( s  e.  NN0  /\  X  =  ( H `
 s ) ) )  /\  ( t  e.  NN0  /\  Y  =  ( H `  t
) ) )  /\  s  <_  t )  ->  A. n  e.  om  E. k  e.  om  A. j  e.  suc  n ( F `  k )  =/=  ( F `  j ) )
3122adantr 276 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( s  e.  NN0  /\  X  =  ( H `
 s ) ) )  /\  ( t  e.  NN0  /\  Y  =  ( H `  t
) ) )  /\  s  <_  t )  -> 
s  e.  NN0 )
32 simplrl 535 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( s  e.  NN0  /\  X  =  ( H `
 s ) ) )  /\  ( t  e.  NN0  /\  Y  =  ( H `  t
) ) )  /\  s  <_  t )  -> 
t  e.  NN0 )
33 simpr 110 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( s  e.  NN0  /\  X  =  ( H `
 s ) ) )  /\  ( t  e.  NN0  /\  Y  =  ( H `  t
) ) )  /\  s  <_  t )  -> 
s  <_  t )
3428, 29, 30, 4, 5, 6, 7, 31, 32, 33ennnfoneleminc 12395 . . . . . . 7  |-  ( ( ( ( ph  /\  ( s  e.  NN0  /\  X  =  ( H `
 s ) ) )  /\  ( t  e.  NN0  /\  Y  =  ( H `  t
) ) )  /\  s  <_  t )  -> 
( H `  s
)  C_  ( H `  t ) )
3534ex 115 . . . . . 6  |-  ( ( ( ph  /\  (
s  e.  NN0  /\  X  =  ( H `  s ) ) )  /\  ( t  e. 
NN0  /\  Y  =  ( H `  t ) ) )  ->  (
s  <_  t  ->  ( H `  s ) 
C_  ( H `  t ) ) )
361ad3antrrr 492 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( s  e.  NN0  /\  X  =  ( H `
 s ) ) )  /\  ( t  e.  NN0  /\  Y  =  ( H `  t
) ) )  /\  t  <_  s )  ->  A. x  e.  A  A. y  e.  A DECID  x  =  y )
372ad3antrrr 492 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( s  e.  NN0  /\  X  =  ( H `
 s ) ) )  /\  ( t  e.  NN0  /\  Y  =  ( H `  t
) ) )  /\  t  <_  s )  ->  F : om -onto-> A )
383ad3antrrr 492 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( s  e.  NN0  /\  X  =  ( H `
 s ) ) )  /\  ( t  e.  NN0  /\  Y  =  ( H `  t
) ) )  /\  t  <_  s )  ->  A. n  e.  om  E. k  e.  om  A. j  e.  suc  n ( F `  k )  =/=  ( F `  j ) )
39 simplrl 535 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( s  e.  NN0  /\  X  =  ( H `
 s ) ) )  /\  ( t  e.  NN0  /\  Y  =  ( H `  t
) ) )  /\  t  <_  s )  -> 
t  e.  NN0 )
4022adantr 276 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( s  e.  NN0  /\  X  =  ( H `
 s ) ) )  /\  ( t  e.  NN0  /\  Y  =  ( H `  t
) ) )  /\  t  <_  s )  -> 
s  e.  NN0 )
41 simpr 110 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( s  e.  NN0  /\  X  =  ( H `
 s ) ) )  /\  ( t  e.  NN0  /\  Y  =  ( H `  t
) ) )  /\  t  <_  s )  -> 
t  <_  s )
4236, 37, 38, 4, 5, 6, 7, 39, 40, 41ennnfoneleminc 12395 . . . . . . 7  |-  ( ( ( ( ph  /\  ( s  e.  NN0  /\  X  =  ( H `
 s ) ) )  /\  ( t  e.  NN0  /\  Y  =  ( H `  t
) ) )  /\  t  <_  s )  -> 
( H `  t
)  C_  ( H `  s ) )
4342ex 115 . . . . . 6  |-  ( ( ( ph  /\  (
s  e.  NN0  /\  X  =  ( H `  s ) ) )  /\  ( t  e. 
NN0  /\  Y  =  ( H `  t ) ) )  ->  (
t  <_  s  ->  ( H `  t ) 
C_  ( H `  s ) ) )
4435, 43orim12d 786 . . . . 5  |-  ( ( ( ph  /\  (
s  e.  NN0  /\  X  =  ( H `  s ) ) )  /\  ( t  e. 
NN0  /\  Y  =  ( H `  t ) ) )  ->  (
( s  <_  t  \/  t  <_  s )  ->  ( ( H `
 s )  C_  ( H `  t )  \/  ( H `  t )  C_  ( H `  s )
) ) )
4527, 44mpd 13 . . . 4  |-  ( ( ( ph  /\  (
s  e.  NN0  /\  X  =  ( H `  s ) ) )  /\  ( t  e. 
NN0  /\  Y  =  ( H `  t ) ) )  ->  (
( H `  s
)  C_  ( H `  t )  \/  ( H `  t )  C_  ( H `  s
) ) )
46 simplrr 536 . . . . . 6  |-  ( ( ( ph  /\  (
s  e.  NN0  /\  X  =  ( H `  s ) ) )  /\  ( t  e. 
NN0  /\  Y  =  ( H `  t ) ) )  ->  X  =  ( H `  s ) )
47 simprr 531 . . . . . 6  |-  ( ( ( ph  /\  (
s  e.  NN0  /\  X  =  ( H `  s ) ) )  /\  ( t  e. 
NN0  /\  Y  =  ( H `  t ) ) )  ->  Y  =  ( H `  t ) )
4846, 47sseq12d 3186 . . . . 5  |-  ( ( ( ph  /\  (
s  e.  NN0  /\  X  =  ( H `  s ) ) )  /\  ( t  e. 
NN0  /\  Y  =  ( H `  t ) ) )  ->  ( X  C_  Y  <->  ( H `  s )  C_  ( H `  t )
) )
4947, 46sseq12d 3186 . . . . 5  |-  ( ( ( ph  /\  (
s  e.  NN0  /\  X  =  ( H `  s ) ) )  /\  ( t  e. 
NN0  /\  Y  =  ( H `  t ) ) )  ->  ( Y  C_  X  <->  ( H `  t )  C_  ( H `  s )
) )
5048, 49orbi12d 793 . . . 4  |-  ( ( ( ph  /\  (
s  e.  NN0  /\  X  =  ( H `  s ) ) )  /\  ( t  e. 
NN0  /\  Y  =  ( H `  t ) ) )  ->  (
( X  C_  Y  \/  Y  C_  X )  <-> 
( ( H `  s )  C_  ( H `  t )  \/  ( H `  t
)  C_  ( H `  s ) ) ) )
5145, 50mpbird 167 . . 3  |-  ( ( ( ph  /\  (
s  e.  NN0  /\  X  =  ( H `  s ) ) )  /\  ( t  e. 
NN0  /\  Y  =  ( H `  t ) ) )  ->  ( X  C_  Y  \/  Y  C_  X ) )
5221, 51rexlimddv 2599 . 2  |-  ( (
ph  /\  ( s  e.  NN0  /\  X  =  ( H `  s
) ) )  -> 
( X  C_  Y  \/  Y  C_  X ) )
5315, 52rexlimddv 2599 1  |-  ( ph  ->  ( X  C_  Y  \/  Y  C_  X ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ wo 708  DECID wdc 834    = wceq 1353    e. wcel 2148    =/= wne 2347   A.wral 2455   E.wrex 2456    u. cun 3127    C_ wss 3129   (/)c0 3422   ifcif 3534   {csn 3591   <.cop 3594   class class class wbr 4000    |-> cmpt 4061   suc csuc 4362   omcom 4586   `'ccnv 4622   dom cdm 4623   ran crn 4624   "cima 4626   Fun wfun 5206   -onto->wfo 5210   ` cfv 5212  (class class class)co 5869    e. cmpo 5871  freccfrec 6385    ^pm cpm 6643   0cc0 7802   1c1 7803    + caddc 7805    <_ cle 7983    - cmin 8118   NN0cn0 9165   ZZcz 9242    seqcseq 10431
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-iinf 4584  ax-cnex 7893  ax-resscn 7894  ax-1cn 7895  ax-1re 7896  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-addcom 7902  ax-addass 7904  ax-distr 7906  ax-i2m1 7907  ax-0lt1 7908  ax-0id 7910  ax-rnegex 7911  ax-cnre 7913  ax-pre-ltirr 7914  ax-pre-ltwlin 7915  ax-pre-lttrn 7916  ax-pre-ltadd 7918
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-tr 4099  df-id 4290  df-iord 4363  df-on 4365  df-ilim 4366  df-suc 4368  df-iom 4587  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-1st 6135  df-2nd 6136  df-recs 6300  df-frec 6386  df-pm 6645  df-pnf 7984  df-mnf 7985  df-xr 7986  df-ltxr 7987  df-le 7988  df-sub 8120  df-neg 8121  df-inn 8909  df-n0 9166  df-z 9243  df-uz 9518  df-seqfrec 10432
This theorem is referenced by:  ennnfonelemfun  12401  ennnfonelemf1  12402
  Copyright terms: Public domain W3C validator