ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvidlemap Unicode version

Theorem dvidlemap 15248
Description: Lemma for dvid 15252 and dvconst 15251. (Contributed by Mario Carneiro, 8-Aug-2014.) (Revised by Jim Kingdon, 2-Aug-2023.)
Hypotheses
Ref Expression
dvidlem.1  |-  ( ph  ->  F : CC --> CC )
dvidlemap.2  |-  ( (
ph  /\  ( x  e.  CC  /\  z  e.  CC  /\  z #  x ) )  ->  (
( ( F `  z )  -  ( F `  x )
)  /  ( z  -  x ) )  =  B )
dvidlem.3  |-  B  e.  CC
Assertion
Ref Expression
dvidlemap  |-  ( ph  ->  ( CC  _D  F
)  =  ( CC 
X.  { B }
) )
Distinct variable groups:    x, z, B   
x, F, z    ph, x, z

Proof of Theorem dvidlemap
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 dvidlem.1 . . . . . 6  |-  ( ph  ->  F : CC --> CC )
2 cnex 8079 . . . . . . 7  |-  CC  e.  _V
32, 2fpm 6786 . . . . . 6  |-  ( F : CC --> CC  ->  F  e.  ( CC  ^pm  CC ) )
41, 3syl 14 . . . . 5  |-  ( ph  ->  F  e.  ( CC 
^pm  CC ) )
5 dvfcnpm 15247 . . . . 5  |-  ( F  e.  ( CC  ^pm  CC )  ->  ( CC  _D  F ) : dom  ( CC  _D  F
) --> CC )
64, 5syl 14 . . . 4  |-  ( ph  ->  ( CC  _D  F
) : dom  ( CC  _D  F ) --> CC )
7 ssidd 3218 . . . . . . 7  |-  ( ph  ->  CC  C_  CC )
87, 1, 7dvbss 15242 . . . . . 6  |-  ( ph  ->  dom  ( CC  _D  F )  C_  CC )
9 reldvg 15236 . . . . . . . . 9  |-  ( ( CC  C_  CC  /\  F  e.  ( CC  ^pm  CC ) )  ->  Rel  ( CC  _D  F
) )
107, 4, 9syl2anc 411 . . . . . . . 8  |-  ( ph  ->  Rel  ( CC  _D  F ) )
1110adantr 276 . . . . . . 7  |-  ( (
ph  /\  x  e.  CC )  ->  Rel  ( CC  _D  F ) )
12 simpr 110 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  CC )  ->  x  e.  CC )
13 eqid 2206 . . . . . . . . . . 11  |-  ( MetOpen `  ( abs  o.  -  )
)  =  ( MetOpen `  ( abs  o.  -  )
)
1413cntoptop 15090 . . . . . . . . . 10  |-  ( MetOpen `  ( abs  o.  -  )
)  e.  Top
1513cntoptopon 15089 . . . . . . . . . . . 12  |-  ( MetOpen `  ( abs  o.  -  )
)  e.  (TopOn `  CC )
1615toponunii 14574 . . . . . . . . . . 11  |-  CC  =  U. ( MetOpen `  ( abs  o. 
-  ) )
1716ntrtop 14685 . . . . . . . . . 10  |-  ( (
MetOpen `  ( abs  o.  -  ) )  e. 
Top  ->  ( ( int `  ( MetOpen `  ( abs  o. 
-  ) ) ) `
 CC )  =  CC )
1814, 17ax-mp 5 . . . . . . . . 9  |-  ( ( int `  ( MetOpen `  ( abs  o.  -  )
) ) `  CC )  =  CC
1912, 18eleqtrrdi 2300 . . . . . . . 8  |-  ( (
ph  /\  x  e.  CC )  ->  x  e.  ( ( int `  ( MetOpen
`  ( abs  o.  -  ) ) ) `
 CC ) )
20 limcresi 15223 . . . . . . . . . 10  |-  ( ( z  e.  CC  |->  B ) lim CC  x ) 
C_  ( ( ( z  e.  CC  |->  B )  |`  { w  e.  CC  |  w #  x } ) lim CC  x )
21 dvidlem.3 . . . . . . . . . . . 12  |-  B  e.  CC
22 ssidd 3218 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  CC )  ->  CC  C_  CC )
23 cncfmptc 15153 . . . . . . . . . . . 12  |-  ( ( B  e.  CC  /\  CC  C_  CC  /\  CC  C_  CC )  ->  (
z  e.  CC  |->  B )  e.  ( CC
-cn-> CC ) )
2421, 22, 22, 23mp3an2i 1355 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  CC )  ->  ( z  e.  CC  |->  B )  e.  ( CC -cn-> CC ) )
25 eqidd 2207 . . . . . . . . . . 11  |-  ( z  =  x  ->  B  =  B )
2624, 12, 25cnmptlimc 15231 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  CC )  ->  B  e.  ( ( z  e.  CC  |->  B ) lim CC  x ) )
2720, 26sselid 3195 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  CC )  ->  B  e.  ( ( ( z  e.  CC  |->  B )  |`  { w  e.  CC  |  w #  x }
) lim CC  x )
)
28 breq1 4057 . . . . . . . . . . . . . 14  |-  ( w  =  z  ->  (
w #  x  <->  z #  x
) )
2928elrab 2933 . . . . . . . . . . . . 13  |-  ( z  e.  { w  e.  CC  |  w #  x } 
<->  ( z  e.  CC  /\  z #  x ) )
30 dvidlemap.2 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( x  e.  CC  /\  z  e.  CC  /\  z #  x ) )  ->  (
( ( F `  z )  -  ( F `  x )
)  /  ( z  -  x ) )  =  B )
31303exp2 1228 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( x  e.  CC  ->  ( z  e.  CC  ->  ( z #  x  -> 
( ( ( F `
 z )  -  ( F `  x ) )  /  ( z  -  x ) )  =  B ) ) ) )
3231imp43 355 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  CC )  /\  (
z  e.  CC  /\  z #  x ) )  -> 
( ( ( F `
 z )  -  ( F `  x ) )  /  ( z  -  x ) )  =  B )
3329, 32sylan2b 287 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  CC )  /\  z  e.  { w  e.  CC  |  w #  x }
)  ->  ( (
( F `  z
)  -  ( F `
 x ) )  /  ( z  -  x ) )  =  B )
3433mpteq2dva 4145 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  CC )  ->  ( z  e.  { w  e.  CC  |  w #  x }  |->  ( ( ( F `  z )  -  ( F `  x ) )  / 
( z  -  x
) ) )  =  ( z  e.  {
w  e.  CC  |  w #  x }  |->  B ) )
35 ssrab2 3282 . . . . . . . . . . . 12  |-  { w  e.  CC  |  w #  x }  C_  CC
36 resmpt 5021 . . . . . . . . . . . 12  |-  ( { w  e.  CC  |  w #  x }  C_  CC  ->  ( ( z  e.  CC  |->  B )  |`  { w  e.  CC  |  w #  x }
)  =  ( z  e.  { w  e.  CC  |  w #  x }  |->  B ) )
3735, 36ax-mp 5 . . . . . . . . . . 11  |-  ( ( z  e.  CC  |->  B )  |`  { w  e.  CC  |  w #  x } )  =  ( z  e.  { w  e.  CC  |  w #  x }  |->  B )
3834, 37eqtr4di 2257 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  CC )  ->  ( z  e.  { w  e.  CC  |  w #  x }  |->  ( ( ( F `  z )  -  ( F `  x ) )  / 
( z  -  x
) ) )  =  ( ( z  e.  CC  |->  B )  |`  { w  e.  CC  |  w #  x }
) )
3938oveq1d 5977 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  CC )  ->  ( ( z  e.  { w  e.  CC  |  w #  x }  |->  ( ( ( F `  z )  -  ( F `  x ) )  / 
( z  -  x
) ) ) lim CC  x )  =  ( ( ( z  e.  CC  |->  B )  |`  { w  e.  CC  |  w #  x }
) lim CC  x )
)
4027, 39eleqtrrd 2286 . . . . . . . 8  |-  ( (
ph  /\  x  e.  CC )  ->  B  e.  ( ( z  e. 
{ w  e.  CC  |  w #  x }  |->  ( ( ( F `
 z )  -  ( F `  x ) )  /  ( z  -  x ) ) ) lim CC  x ) )
4115toponrestid 14578 . . . . . . . . 9  |-  ( MetOpen `  ( abs  o.  -  )
)  =  ( (
MetOpen `  ( abs  o.  -  ) )t  CC )
42 eqid 2206 . . . . . . . . 9  |-  ( z  e.  { w  e.  CC  |  w #  x }  |->  ( ( ( F `  z )  -  ( F `  x ) )  / 
( z  -  x
) ) )  =  ( z  e.  {
w  e.  CC  |  w #  x }  |->  ( ( ( F `  z
)  -  ( F `
 x ) )  /  ( z  -  x ) ) )
431adantr 276 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  CC )  ->  F : CC
--> CC )
4441, 13, 42, 22, 43, 22eldvap 15239 . . . . . . . 8  |-  ( (
ph  /\  x  e.  CC )  ->  ( x ( CC  _D  F
) B  <->  ( x  e.  ( ( int `  ( MetOpen
`  ( abs  o.  -  ) ) ) `
 CC )  /\  B  e.  ( (
z  e.  { w  e.  CC  |  w #  x }  |->  ( ( ( F `  z )  -  ( F `  x ) )  / 
( z  -  x
) ) ) lim CC  x ) ) ) )
4519, 40, 44mpbir2and 947 . . . . . . 7  |-  ( (
ph  /\  x  e.  CC )  ->  x ( CC  _D  F ) B )
46 releldm 4927 . . . . . . 7  |-  ( ( Rel  ( CC  _D  F )  /\  x
( CC  _D  F
) B )  ->  x  e.  dom  ( CC 
_D  F ) )
4711, 45, 46syl2anc 411 . . . . . 6  |-  ( (
ph  /\  x  e.  CC )  ->  x  e. 
dom  ( CC  _D  F ) )
488, 47eqelssd 3216 . . . . 5  |-  ( ph  ->  dom  ( CC  _D  F )  =  CC )
4948feq2d 5428 . . . 4  |-  ( ph  ->  ( ( CC  _D  F ) : dom  ( CC  _D  F
) --> CC  <->  ( CC  _D  F ) : CC --> CC ) )
506, 49mpbid 147 . . 3  |-  ( ph  ->  ( CC  _D  F
) : CC --> CC )
5150ffnd 5441 . 2  |-  ( ph  ->  ( CC  _D  F
)  Fn  CC )
52 fnconstg 5490 . . 3  |-  ( B  e.  CC  ->  ( CC  X.  { B }
)  Fn  CC )
5321, 52mp1i 10 . 2  |-  ( ph  ->  ( CC  X.  { B } )  Fn  CC )
546adantr 276 . . . . . 6  |-  ( (
ph  /\  x  e.  CC )  ->  ( CC 
_D  F ) : dom  ( CC  _D  F ) --> CC )
5554ffund 5444 . . . . 5  |-  ( (
ph  /\  x  e.  CC )  ->  Fun  ( CC  _D  F ) )
56 funbrfvb 5639 . . . . 5  |-  ( ( Fun  ( CC  _D  F )  /\  x  e.  dom  ( CC  _D  F ) )  -> 
( ( ( CC 
_D  F ) `  x )  =  B  <-> 
x ( CC  _D  F ) B ) )
5755, 47, 56syl2anc 411 . . . 4  |-  ( (
ph  /\  x  e.  CC )  ->  ( ( ( CC  _D  F
) `  x )  =  B  <->  x ( CC 
_D  F ) B ) )
5845, 57mpbird 167 . . 3  |-  ( (
ph  /\  x  e.  CC )  ->  ( ( CC  _D  F ) `
 x )  =  B )
5921a1i 9 . . . 4  |-  ( ph  ->  B  e.  CC )
60 fvconst2g 5816 . . . 4  |-  ( ( B  e.  CC  /\  x  e.  CC )  ->  ( ( CC  X.  { B } ) `  x )  =  B )
6159, 60sylan 283 . . 3  |-  ( (
ph  /\  x  e.  CC )  ->  ( ( CC  X.  { B } ) `  x
)  =  B )
6258, 61eqtr4d 2242 . 2  |-  ( (
ph  /\  x  e.  CC )  ->  ( ( CC  _D  F ) `
 x )  =  ( ( CC  X.  { B } ) `  x ) )
6351, 53, 62eqfnfvd 5698 1  |-  ( ph  ->  ( CC  _D  F
)  =  ( CC 
X.  { B }
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 981    = wceq 1373    e. wcel 2177   {crab 2489    C_ wss 3170   {csn 3638   class class class wbr 4054    |-> cmpt 4116    X. cxp 4686   dom cdm 4688    |` cres 4690    o. ccom 4692   Rel wrel 4693   Fun wfun 5279    Fn wfn 5280   -->wf 5281   ` cfv 5285  (class class class)co 5962    ^pm cpm 6754   CCcc 7953    - cmin 8273   # cap 8684    / cdiv 8775   abscabs 11393   MetOpencmopn 14388   Topctop 14554   intcnt 14650   -cn->ccncf 15127   lim CC climc 15211    _D cdv 15212
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4170  ax-sep 4173  ax-nul 4181  ax-pow 4229  ax-pr 4264  ax-un 4493  ax-setind 4598  ax-iinf 4649  ax-cnex 8046  ax-resscn 8047  ax-1cn 8048  ax-1re 8049  ax-icn 8050  ax-addcl 8051  ax-addrcl 8052  ax-mulcl 8053  ax-mulrcl 8054  ax-addcom 8055  ax-mulcom 8056  ax-addass 8057  ax-mulass 8058  ax-distr 8059  ax-i2m1 8060  ax-0lt1 8061  ax-1rid 8062  ax-0id 8063  ax-rnegex 8064  ax-precex 8065  ax-cnre 8066  ax-pre-ltirr 8067  ax-pre-ltwlin 8068  ax-pre-lttrn 8069  ax-pre-apti 8070  ax-pre-ltadd 8071  ax-pre-mulgt0 8072  ax-pre-mulext 8073  ax-arch 8074  ax-caucvg 8075
This theorem depends on definitions:  df-bi 117  df-stab 833  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-if 3576  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3860  df-int 3895  df-iun 3938  df-br 4055  df-opab 4117  df-mpt 4118  df-tr 4154  df-id 4353  df-po 4356  df-iso 4357  df-iord 4426  df-on 4428  df-ilim 4429  df-suc 4431  df-iom 4652  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-iota 5246  df-fun 5287  df-fn 5288  df-f 5289  df-f1 5290  df-fo 5291  df-f1o 5292  df-fv 5293  df-isom 5294  df-riota 5917  df-ov 5965  df-oprab 5966  df-mpo 5967  df-1st 6244  df-2nd 6245  df-recs 6409  df-frec 6495  df-map 6755  df-pm 6756  df-sup 7107  df-inf 7108  df-pnf 8139  df-mnf 8140  df-xr 8141  df-ltxr 8142  df-le 8143  df-sub 8275  df-neg 8276  df-reap 8678  df-ap 8685  df-div 8776  df-inn 9067  df-2 9125  df-3 9126  df-4 9127  df-n0 9326  df-z 9403  df-uz 9679  df-q 9771  df-rp 9806  df-xneg 9924  df-xadd 9925  df-seqfrec 10625  df-exp 10716  df-cj 11238  df-re 11239  df-im 11240  df-rsqrt 11394  df-abs 11395  df-rest 13158  df-topgen 13177  df-psmet 14390  df-xmet 14391  df-met 14392  df-bl 14393  df-mopn 14394  df-top 14555  df-topon 14568  df-bases 14600  df-ntr 14653  df-cn 14745  df-cnp 14746  df-cncf 15128  df-limced 15213  df-dvap 15214
This theorem is referenced by:  dvconst  15251  dvid  15252
  Copyright terms: Public domain W3C validator