ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvidlemap Unicode version

Theorem dvidlemap 14927
Description: Lemma for dvid 14931 and dvconst 14930. (Contributed by Mario Carneiro, 8-Aug-2014.) (Revised by Jim Kingdon, 2-Aug-2023.)
Hypotheses
Ref Expression
dvidlem.1  |-  ( ph  ->  F : CC --> CC )
dvidlemap.2  |-  ( (
ph  /\  ( x  e.  CC  /\  z  e.  CC  /\  z #  x ) )  ->  (
( ( F `  z )  -  ( F `  x )
)  /  ( z  -  x ) )  =  B )
dvidlem.3  |-  B  e.  CC
Assertion
Ref Expression
dvidlemap  |-  ( ph  ->  ( CC  _D  F
)  =  ( CC 
X.  { B }
) )
Distinct variable groups:    x, z, B   
x, F, z    ph, x, z

Proof of Theorem dvidlemap
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 dvidlem.1 . . . . . 6  |-  ( ph  ->  F : CC --> CC )
2 cnex 8003 . . . . . . 7  |-  CC  e.  _V
32, 2fpm 6740 . . . . . 6  |-  ( F : CC --> CC  ->  F  e.  ( CC  ^pm  CC ) )
41, 3syl 14 . . . . 5  |-  ( ph  ->  F  e.  ( CC 
^pm  CC ) )
5 dvfcnpm 14926 . . . . 5  |-  ( F  e.  ( CC  ^pm  CC )  ->  ( CC  _D  F ) : dom  ( CC  _D  F
) --> CC )
64, 5syl 14 . . . 4  |-  ( ph  ->  ( CC  _D  F
) : dom  ( CC  _D  F ) --> CC )
7 ssidd 3204 . . . . . . 7  |-  ( ph  ->  CC  C_  CC )
87, 1, 7dvbss 14921 . . . . . 6  |-  ( ph  ->  dom  ( CC  _D  F )  C_  CC )
9 reldvg 14915 . . . . . . . . 9  |-  ( ( CC  C_  CC  /\  F  e.  ( CC  ^pm  CC ) )  ->  Rel  ( CC  _D  F
) )
107, 4, 9syl2anc 411 . . . . . . . 8  |-  ( ph  ->  Rel  ( CC  _D  F ) )
1110adantr 276 . . . . . . 7  |-  ( (
ph  /\  x  e.  CC )  ->  Rel  ( CC  _D  F ) )
12 simpr 110 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  CC )  ->  x  e.  CC )
13 eqid 2196 . . . . . . . . . . 11  |-  ( MetOpen `  ( abs  o.  -  )
)  =  ( MetOpen `  ( abs  o.  -  )
)
1413cntoptop 14769 . . . . . . . . . 10  |-  ( MetOpen `  ( abs  o.  -  )
)  e.  Top
1513cntoptopon 14768 . . . . . . . . . . . 12  |-  ( MetOpen `  ( abs  o.  -  )
)  e.  (TopOn `  CC )
1615toponunii 14253 . . . . . . . . . . 11  |-  CC  =  U. ( MetOpen `  ( abs  o. 
-  ) )
1716ntrtop 14364 . . . . . . . . . 10  |-  ( (
MetOpen `  ( abs  o.  -  ) )  e. 
Top  ->  ( ( int `  ( MetOpen `  ( abs  o. 
-  ) ) ) `
 CC )  =  CC )
1814, 17ax-mp 5 . . . . . . . . 9  |-  ( ( int `  ( MetOpen `  ( abs  o.  -  )
) ) `  CC )  =  CC
1912, 18eleqtrrdi 2290 . . . . . . . 8  |-  ( (
ph  /\  x  e.  CC )  ->  x  e.  ( ( int `  ( MetOpen
`  ( abs  o.  -  ) ) ) `
 CC ) )
20 limcresi 14902 . . . . . . . . . 10  |-  ( ( z  e.  CC  |->  B ) lim CC  x ) 
C_  ( ( ( z  e.  CC  |->  B )  |`  { w  e.  CC  |  w #  x } ) lim CC  x )
21 dvidlem.3 . . . . . . . . . . . 12  |-  B  e.  CC
22 ssidd 3204 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  CC )  ->  CC  C_  CC )
23 cncfmptc 14832 . . . . . . . . . . . 12  |-  ( ( B  e.  CC  /\  CC  C_  CC  /\  CC  C_  CC )  ->  (
z  e.  CC  |->  B )  e.  ( CC
-cn-> CC ) )
2421, 22, 22, 23mp3an2i 1353 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  CC )  ->  ( z  e.  CC  |->  B )  e.  ( CC -cn-> CC ) )
25 eqidd 2197 . . . . . . . . . . 11  |-  ( z  =  x  ->  B  =  B )
2624, 12, 25cnmptlimc 14910 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  CC )  ->  B  e.  ( ( z  e.  CC  |->  B ) lim CC  x ) )
2720, 26sselid 3181 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  CC )  ->  B  e.  ( ( ( z  e.  CC  |->  B )  |`  { w  e.  CC  |  w #  x }
) lim CC  x )
)
28 breq1 4036 . . . . . . . . . . . . . 14  |-  ( w  =  z  ->  (
w #  x  <->  z #  x
) )
2928elrab 2920 . . . . . . . . . . . . 13  |-  ( z  e.  { w  e.  CC  |  w #  x } 
<->  ( z  e.  CC  /\  z #  x ) )
30 dvidlemap.2 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( x  e.  CC  /\  z  e.  CC  /\  z #  x ) )  ->  (
( ( F `  z )  -  ( F `  x )
)  /  ( z  -  x ) )  =  B )
31303exp2 1227 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( x  e.  CC  ->  ( z  e.  CC  ->  ( z #  x  -> 
( ( ( F `
 z )  -  ( F `  x ) )  /  ( z  -  x ) )  =  B ) ) ) )
3231imp43 355 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  CC )  /\  (
z  e.  CC  /\  z #  x ) )  -> 
( ( ( F `
 z )  -  ( F `  x ) )  /  ( z  -  x ) )  =  B )
3329, 32sylan2b 287 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  CC )  /\  z  e.  { w  e.  CC  |  w #  x }
)  ->  ( (
( F `  z
)  -  ( F `
 x ) )  /  ( z  -  x ) )  =  B )
3433mpteq2dva 4123 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  CC )  ->  ( z  e.  { w  e.  CC  |  w #  x }  |->  ( ( ( F `  z )  -  ( F `  x ) )  / 
( z  -  x
) ) )  =  ( z  e.  {
w  e.  CC  |  w #  x }  |->  B ) )
35 ssrab2 3268 . . . . . . . . . . . 12  |-  { w  e.  CC  |  w #  x }  C_  CC
36 resmpt 4994 . . . . . . . . . . . 12  |-  ( { w  e.  CC  |  w #  x }  C_  CC  ->  ( ( z  e.  CC  |->  B )  |`  { w  e.  CC  |  w #  x }
)  =  ( z  e.  { w  e.  CC  |  w #  x }  |->  B ) )
3735, 36ax-mp 5 . . . . . . . . . . 11  |-  ( ( z  e.  CC  |->  B )  |`  { w  e.  CC  |  w #  x } )  =  ( z  e.  { w  e.  CC  |  w #  x }  |->  B )
3834, 37eqtr4di 2247 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  CC )  ->  ( z  e.  { w  e.  CC  |  w #  x }  |->  ( ( ( F `  z )  -  ( F `  x ) )  / 
( z  -  x
) ) )  =  ( ( z  e.  CC  |->  B )  |`  { w  e.  CC  |  w #  x }
) )
3938oveq1d 5937 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  CC )  ->  ( ( z  e.  { w  e.  CC  |  w #  x }  |->  ( ( ( F `  z )  -  ( F `  x ) )  / 
( z  -  x
) ) ) lim CC  x )  =  ( ( ( z  e.  CC  |->  B )  |`  { w  e.  CC  |  w #  x }
) lim CC  x )
)
4027, 39eleqtrrd 2276 . . . . . . . 8  |-  ( (
ph  /\  x  e.  CC )  ->  B  e.  ( ( z  e. 
{ w  e.  CC  |  w #  x }  |->  ( ( ( F `
 z )  -  ( F `  x ) )  /  ( z  -  x ) ) ) lim CC  x ) )
4115toponrestid 14257 . . . . . . . . 9  |-  ( MetOpen `  ( abs  o.  -  )
)  =  ( (
MetOpen `  ( abs  o.  -  ) )t  CC )
42 eqid 2196 . . . . . . . . 9  |-  ( z  e.  { w  e.  CC  |  w #  x }  |->  ( ( ( F `  z )  -  ( F `  x ) )  / 
( z  -  x
) ) )  =  ( z  e.  {
w  e.  CC  |  w #  x }  |->  ( ( ( F `  z
)  -  ( F `
 x ) )  /  ( z  -  x ) ) )
431adantr 276 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  CC )  ->  F : CC
--> CC )
4441, 13, 42, 22, 43, 22eldvap 14918 . . . . . . . 8  |-  ( (
ph  /\  x  e.  CC )  ->  ( x ( CC  _D  F
) B  <->  ( x  e.  ( ( int `  ( MetOpen
`  ( abs  o.  -  ) ) ) `
 CC )  /\  B  e.  ( (
z  e.  { w  e.  CC  |  w #  x }  |->  ( ( ( F `  z )  -  ( F `  x ) )  / 
( z  -  x
) ) ) lim CC  x ) ) ) )
4519, 40, 44mpbir2and 946 . . . . . . 7  |-  ( (
ph  /\  x  e.  CC )  ->  x ( CC  _D  F ) B )
46 releldm 4901 . . . . . . 7  |-  ( ( Rel  ( CC  _D  F )  /\  x
( CC  _D  F
) B )  ->  x  e.  dom  ( CC 
_D  F ) )
4711, 45, 46syl2anc 411 . . . . . 6  |-  ( (
ph  /\  x  e.  CC )  ->  x  e. 
dom  ( CC  _D  F ) )
488, 47eqelssd 3202 . . . . 5  |-  ( ph  ->  dom  ( CC  _D  F )  =  CC )
4948feq2d 5395 . . . 4  |-  ( ph  ->  ( ( CC  _D  F ) : dom  ( CC  _D  F
) --> CC  <->  ( CC  _D  F ) : CC --> CC ) )
506, 49mpbid 147 . . 3  |-  ( ph  ->  ( CC  _D  F
) : CC --> CC )
5150ffnd 5408 . 2  |-  ( ph  ->  ( CC  _D  F
)  Fn  CC )
52 fnconstg 5455 . . 3  |-  ( B  e.  CC  ->  ( CC  X.  { B }
)  Fn  CC )
5321, 52mp1i 10 . 2  |-  ( ph  ->  ( CC  X.  { B } )  Fn  CC )
546adantr 276 . . . . . 6  |-  ( (
ph  /\  x  e.  CC )  ->  ( CC 
_D  F ) : dom  ( CC  _D  F ) --> CC )
5554ffund 5411 . . . . 5  |-  ( (
ph  /\  x  e.  CC )  ->  Fun  ( CC  _D  F ) )
56 funbrfvb 5603 . . . . 5  |-  ( ( Fun  ( CC  _D  F )  /\  x  e.  dom  ( CC  _D  F ) )  -> 
( ( ( CC 
_D  F ) `  x )  =  B  <-> 
x ( CC  _D  F ) B ) )
5755, 47, 56syl2anc 411 . . . 4  |-  ( (
ph  /\  x  e.  CC )  ->  ( ( ( CC  _D  F
) `  x )  =  B  <->  x ( CC 
_D  F ) B ) )
5845, 57mpbird 167 . . 3  |-  ( (
ph  /\  x  e.  CC )  ->  ( ( CC  _D  F ) `
 x )  =  B )
5921a1i 9 . . . 4  |-  ( ph  ->  B  e.  CC )
60 fvconst2g 5776 . . . 4  |-  ( ( B  e.  CC  /\  x  e.  CC )  ->  ( ( CC  X.  { B } ) `  x )  =  B )
6159, 60sylan 283 . . 3  |-  ( (
ph  /\  x  e.  CC )  ->  ( ( CC  X.  { B } ) `  x
)  =  B )
6258, 61eqtr4d 2232 . 2  |-  ( (
ph  /\  x  e.  CC )  ->  ( ( CC  _D  F ) `
 x )  =  ( ( CC  X.  { B } ) `  x ) )
6351, 53, 62eqfnfvd 5662 1  |-  ( ph  ->  ( CC  _D  F
)  =  ( CC 
X.  { B }
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2167   {crab 2479    C_ wss 3157   {csn 3622   class class class wbr 4033    |-> cmpt 4094    X. cxp 4661   dom cdm 4663    |` cres 4665    o. ccom 4667   Rel wrel 4668   Fun wfun 5252    Fn wfn 5253   -->wf 5254   ` cfv 5258  (class class class)co 5922    ^pm cpm 6708   CCcc 7877    - cmin 8197   # cap 8608    / cdiv 8699   abscabs 11162   MetOpencmopn 14097   Topctop 14233   intcnt 14329   -cn->ccncf 14806   lim CC climc 14890    _D cdv 14891
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997  ax-arch 7998  ax-caucvg 7999
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-isom 5267  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-frec 6449  df-map 6709  df-pm 6710  df-sup 7050  df-inf 7051  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-2 9049  df-3 9050  df-4 9051  df-n0 9250  df-z 9327  df-uz 9602  df-q 9694  df-rp 9729  df-xneg 9847  df-xadd 9848  df-seqfrec 10540  df-exp 10631  df-cj 11007  df-re 11008  df-im 11009  df-rsqrt 11163  df-abs 11164  df-rest 12912  df-topgen 12931  df-psmet 14099  df-xmet 14100  df-met 14101  df-bl 14102  df-mopn 14103  df-top 14234  df-topon 14247  df-bases 14279  df-ntr 14332  df-cn 14424  df-cnp 14425  df-cncf 14807  df-limced 14892  df-dvap 14893
This theorem is referenced by:  dvconst  14930  dvid  14931
  Copyright terms: Public domain W3C validator