ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvidlemap Unicode version

Theorem dvidlemap 15134
Description: Lemma for dvid 15138 and dvconst 15137. (Contributed by Mario Carneiro, 8-Aug-2014.) (Revised by Jim Kingdon, 2-Aug-2023.)
Hypotheses
Ref Expression
dvidlem.1  |-  ( ph  ->  F : CC --> CC )
dvidlemap.2  |-  ( (
ph  /\  ( x  e.  CC  /\  z  e.  CC  /\  z #  x ) )  ->  (
( ( F `  z )  -  ( F `  x )
)  /  ( z  -  x ) )  =  B )
dvidlem.3  |-  B  e.  CC
Assertion
Ref Expression
dvidlemap  |-  ( ph  ->  ( CC  _D  F
)  =  ( CC 
X.  { B }
) )
Distinct variable groups:    x, z, B   
x, F, z    ph, x, z

Proof of Theorem dvidlemap
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 dvidlem.1 . . . . . 6  |-  ( ph  ->  F : CC --> CC )
2 cnex 8048 . . . . . . 7  |-  CC  e.  _V
32, 2fpm 6767 . . . . . 6  |-  ( F : CC --> CC  ->  F  e.  ( CC  ^pm  CC ) )
41, 3syl 14 . . . . 5  |-  ( ph  ->  F  e.  ( CC 
^pm  CC ) )
5 dvfcnpm 15133 . . . . 5  |-  ( F  e.  ( CC  ^pm  CC )  ->  ( CC  _D  F ) : dom  ( CC  _D  F
) --> CC )
64, 5syl 14 . . . 4  |-  ( ph  ->  ( CC  _D  F
) : dom  ( CC  _D  F ) --> CC )
7 ssidd 3213 . . . . . . 7  |-  ( ph  ->  CC  C_  CC )
87, 1, 7dvbss 15128 . . . . . 6  |-  ( ph  ->  dom  ( CC  _D  F )  C_  CC )
9 reldvg 15122 . . . . . . . . 9  |-  ( ( CC  C_  CC  /\  F  e.  ( CC  ^pm  CC ) )  ->  Rel  ( CC  _D  F
) )
107, 4, 9syl2anc 411 . . . . . . . 8  |-  ( ph  ->  Rel  ( CC  _D  F ) )
1110adantr 276 . . . . . . 7  |-  ( (
ph  /\  x  e.  CC )  ->  Rel  ( CC  _D  F ) )
12 simpr 110 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  CC )  ->  x  e.  CC )
13 eqid 2204 . . . . . . . . . . 11  |-  ( MetOpen `  ( abs  o.  -  )
)  =  ( MetOpen `  ( abs  o.  -  )
)
1413cntoptop 14976 . . . . . . . . . 10  |-  ( MetOpen `  ( abs  o.  -  )
)  e.  Top
1513cntoptopon 14975 . . . . . . . . . . . 12  |-  ( MetOpen `  ( abs  o.  -  )
)  e.  (TopOn `  CC )
1615toponunii 14460 . . . . . . . . . . 11  |-  CC  =  U. ( MetOpen `  ( abs  o. 
-  ) )
1716ntrtop 14571 . . . . . . . . . 10  |-  ( (
MetOpen `  ( abs  o.  -  ) )  e. 
Top  ->  ( ( int `  ( MetOpen `  ( abs  o. 
-  ) ) ) `
 CC )  =  CC )
1814, 17ax-mp 5 . . . . . . . . 9  |-  ( ( int `  ( MetOpen `  ( abs  o.  -  )
) ) `  CC )  =  CC
1912, 18eleqtrrdi 2298 . . . . . . . 8  |-  ( (
ph  /\  x  e.  CC )  ->  x  e.  ( ( int `  ( MetOpen
`  ( abs  o.  -  ) ) ) `
 CC ) )
20 limcresi 15109 . . . . . . . . . 10  |-  ( ( z  e.  CC  |->  B ) lim CC  x ) 
C_  ( ( ( z  e.  CC  |->  B )  |`  { w  e.  CC  |  w #  x } ) lim CC  x )
21 dvidlem.3 . . . . . . . . . . . 12  |-  B  e.  CC
22 ssidd 3213 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  CC )  ->  CC  C_  CC )
23 cncfmptc 15039 . . . . . . . . . . . 12  |-  ( ( B  e.  CC  /\  CC  C_  CC  /\  CC  C_  CC )  ->  (
z  e.  CC  |->  B )  e.  ( CC
-cn-> CC ) )
2421, 22, 22, 23mp3an2i 1354 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  CC )  ->  ( z  e.  CC  |->  B )  e.  ( CC -cn-> CC ) )
25 eqidd 2205 . . . . . . . . . . 11  |-  ( z  =  x  ->  B  =  B )
2624, 12, 25cnmptlimc 15117 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  CC )  ->  B  e.  ( ( z  e.  CC  |->  B ) lim CC  x ) )
2720, 26sselid 3190 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  CC )  ->  B  e.  ( ( ( z  e.  CC  |->  B )  |`  { w  e.  CC  |  w #  x }
) lim CC  x )
)
28 breq1 4046 . . . . . . . . . . . . . 14  |-  ( w  =  z  ->  (
w #  x  <->  z #  x
) )
2928elrab 2928 . . . . . . . . . . . . 13  |-  ( z  e.  { w  e.  CC  |  w #  x } 
<->  ( z  e.  CC  /\  z #  x ) )
30 dvidlemap.2 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( x  e.  CC  /\  z  e.  CC  /\  z #  x ) )  ->  (
( ( F `  z )  -  ( F `  x )
)  /  ( z  -  x ) )  =  B )
31303exp2 1227 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( x  e.  CC  ->  ( z  e.  CC  ->  ( z #  x  -> 
( ( ( F `
 z )  -  ( F `  x ) )  /  ( z  -  x ) )  =  B ) ) ) )
3231imp43 355 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  CC )  /\  (
z  e.  CC  /\  z #  x ) )  -> 
( ( ( F `
 z )  -  ( F `  x ) )  /  ( z  -  x ) )  =  B )
3329, 32sylan2b 287 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  CC )  /\  z  e.  { w  e.  CC  |  w #  x }
)  ->  ( (
( F `  z
)  -  ( F `
 x ) )  /  ( z  -  x ) )  =  B )
3433mpteq2dva 4133 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  CC )  ->  ( z  e.  { w  e.  CC  |  w #  x }  |->  ( ( ( F `  z )  -  ( F `  x ) )  / 
( z  -  x
) ) )  =  ( z  e.  {
w  e.  CC  |  w #  x }  |->  B ) )
35 ssrab2 3277 . . . . . . . . . . . 12  |-  { w  e.  CC  |  w #  x }  C_  CC
36 resmpt 5006 . . . . . . . . . . . 12  |-  ( { w  e.  CC  |  w #  x }  C_  CC  ->  ( ( z  e.  CC  |->  B )  |`  { w  e.  CC  |  w #  x }
)  =  ( z  e.  { w  e.  CC  |  w #  x }  |->  B ) )
3735, 36ax-mp 5 . . . . . . . . . . 11  |-  ( ( z  e.  CC  |->  B )  |`  { w  e.  CC  |  w #  x } )  =  ( z  e.  { w  e.  CC  |  w #  x }  |->  B )
3834, 37eqtr4di 2255 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  CC )  ->  ( z  e.  { w  e.  CC  |  w #  x }  |->  ( ( ( F `  z )  -  ( F `  x ) )  / 
( z  -  x
) ) )  =  ( ( z  e.  CC  |->  B )  |`  { w  e.  CC  |  w #  x }
) )
3938oveq1d 5958 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  CC )  ->  ( ( z  e.  { w  e.  CC  |  w #  x }  |->  ( ( ( F `  z )  -  ( F `  x ) )  / 
( z  -  x
) ) ) lim CC  x )  =  ( ( ( z  e.  CC  |->  B )  |`  { w  e.  CC  |  w #  x }
) lim CC  x )
)
4027, 39eleqtrrd 2284 . . . . . . . 8  |-  ( (
ph  /\  x  e.  CC )  ->  B  e.  ( ( z  e. 
{ w  e.  CC  |  w #  x }  |->  ( ( ( F `
 z )  -  ( F `  x ) )  /  ( z  -  x ) ) ) lim CC  x ) )
4115toponrestid 14464 . . . . . . . . 9  |-  ( MetOpen `  ( abs  o.  -  )
)  =  ( (
MetOpen `  ( abs  o.  -  ) )t  CC )
42 eqid 2204 . . . . . . . . 9  |-  ( z  e.  { w  e.  CC  |  w #  x }  |->  ( ( ( F `  z )  -  ( F `  x ) )  / 
( z  -  x
) ) )  =  ( z  e.  {
w  e.  CC  |  w #  x }  |->  ( ( ( F `  z
)  -  ( F `
 x ) )  /  ( z  -  x ) ) )
431adantr 276 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  CC )  ->  F : CC
--> CC )
4441, 13, 42, 22, 43, 22eldvap 15125 . . . . . . . 8  |-  ( (
ph  /\  x  e.  CC )  ->  ( x ( CC  _D  F
) B  <->  ( x  e.  ( ( int `  ( MetOpen
`  ( abs  o.  -  ) ) ) `
 CC )  /\  B  e.  ( (
z  e.  { w  e.  CC  |  w #  x }  |->  ( ( ( F `  z )  -  ( F `  x ) )  / 
( z  -  x
) ) ) lim CC  x ) ) ) )
4519, 40, 44mpbir2and 946 . . . . . . 7  |-  ( (
ph  /\  x  e.  CC )  ->  x ( CC  _D  F ) B )
46 releldm 4912 . . . . . . 7  |-  ( ( Rel  ( CC  _D  F )  /\  x
( CC  _D  F
) B )  ->  x  e.  dom  ( CC 
_D  F ) )
4711, 45, 46syl2anc 411 . . . . . 6  |-  ( (
ph  /\  x  e.  CC )  ->  x  e. 
dom  ( CC  _D  F ) )
488, 47eqelssd 3211 . . . . 5  |-  ( ph  ->  dom  ( CC  _D  F )  =  CC )
4948feq2d 5412 . . . 4  |-  ( ph  ->  ( ( CC  _D  F ) : dom  ( CC  _D  F
) --> CC  <->  ( CC  _D  F ) : CC --> CC ) )
506, 49mpbid 147 . . 3  |-  ( ph  ->  ( CC  _D  F
) : CC --> CC )
5150ffnd 5425 . 2  |-  ( ph  ->  ( CC  _D  F
)  Fn  CC )
52 fnconstg 5472 . . 3  |-  ( B  e.  CC  ->  ( CC  X.  { B }
)  Fn  CC )
5321, 52mp1i 10 . 2  |-  ( ph  ->  ( CC  X.  { B } )  Fn  CC )
546adantr 276 . . . . . 6  |-  ( (
ph  /\  x  e.  CC )  ->  ( CC 
_D  F ) : dom  ( CC  _D  F ) --> CC )
5554ffund 5428 . . . . 5  |-  ( (
ph  /\  x  e.  CC )  ->  Fun  ( CC  _D  F ) )
56 funbrfvb 5620 . . . . 5  |-  ( ( Fun  ( CC  _D  F )  /\  x  e.  dom  ( CC  _D  F ) )  -> 
( ( ( CC 
_D  F ) `  x )  =  B  <-> 
x ( CC  _D  F ) B ) )
5755, 47, 56syl2anc 411 . . . 4  |-  ( (
ph  /\  x  e.  CC )  ->  ( ( ( CC  _D  F
) `  x )  =  B  <->  x ( CC 
_D  F ) B ) )
5845, 57mpbird 167 . . 3  |-  ( (
ph  /\  x  e.  CC )  ->  ( ( CC  _D  F ) `
 x )  =  B )
5921a1i 9 . . . 4  |-  ( ph  ->  B  e.  CC )
60 fvconst2g 5797 . . . 4  |-  ( ( B  e.  CC  /\  x  e.  CC )  ->  ( ( CC  X.  { B } ) `  x )  =  B )
6159, 60sylan 283 . . 3  |-  ( (
ph  /\  x  e.  CC )  ->  ( ( CC  X.  { B } ) `  x
)  =  B )
6258, 61eqtr4d 2240 . 2  |-  ( (
ph  /\  x  e.  CC )  ->  ( ( CC  _D  F ) `
 x )  =  ( ( CC  X.  { B } ) `  x ) )
6351, 53, 62eqfnfvd 5679 1  |-  ( ph  ->  ( CC  _D  F
)  =  ( CC 
X.  { B }
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1372    e. wcel 2175   {crab 2487    C_ wss 3165   {csn 3632   class class class wbr 4043    |-> cmpt 4104    X. cxp 4672   dom cdm 4674    |` cres 4676    o. ccom 4678   Rel wrel 4679   Fun wfun 5264    Fn wfn 5265   -->wf 5266   ` cfv 5270  (class class class)co 5943    ^pm cpm 6735   CCcc 7922    - cmin 8242   # cap 8653    / cdiv 8744   abscabs 11279   MetOpencmopn 14274   Topctop 14440   intcnt 14536   -cn->ccncf 15013   lim CC climc 15097    _D cdv 15098
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-iinf 4635  ax-cnex 8015  ax-resscn 8016  ax-1cn 8017  ax-1re 8018  ax-icn 8019  ax-addcl 8020  ax-addrcl 8021  ax-mulcl 8022  ax-mulrcl 8023  ax-addcom 8024  ax-mulcom 8025  ax-addass 8026  ax-mulass 8027  ax-distr 8028  ax-i2m1 8029  ax-0lt1 8030  ax-1rid 8031  ax-0id 8032  ax-rnegex 8033  ax-precex 8034  ax-cnre 8035  ax-pre-ltirr 8036  ax-pre-ltwlin 8037  ax-pre-lttrn 8038  ax-pre-apti 8039  ax-pre-ltadd 8040  ax-pre-mulgt0 8041  ax-pre-mulext 8042  ax-arch 8043  ax-caucvg 8044
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rmo 2491  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-if 3571  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-tr 4142  df-id 4339  df-po 4342  df-iso 4343  df-iord 4412  df-on 4414  df-ilim 4415  df-suc 4417  df-iom 4638  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-f1 5275  df-fo 5276  df-f1o 5277  df-fv 5278  df-isom 5279  df-riota 5898  df-ov 5946  df-oprab 5947  df-mpo 5948  df-1st 6225  df-2nd 6226  df-recs 6390  df-frec 6476  df-map 6736  df-pm 6737  df-sup 7085  df-inf 7086  df-pnf 8108  df-mnf 8109  df-xr 8110  df-ltxr 8111  df-le 8112  df-sub 8244  df-neg 8245  df-reap 8647  df-ap 8654  df-div 8745  df-inn 9036  df-2 9094  df-3 9095  df-4 9096  df-n0 9295  df-z 9372  df-uz 9648  df-q 9740  df-rp 9775  df-xneg 9893  df-xadd 9894  df-seqfrec 10591  df-exp 10682  df-cj 11124  df-re 11125  df-im 11126  df-rsqrt 11280  df-abs 11281  df-rest 13044  df-topgen 13063  df-psmet 14276  df-xmet 14277  df-met 14278  df-bl 14279  df-mopn 14280  df-top 14441  df-topon 14454  df-bases 14486  df-ntr 14539  df-cn 14631  df-cnp 14632  df-cncf 15014  df-limced 15099  df-dvap 15100
This theorem is referenced by:  dvconst  15137  dvid  15138
  Copyright terms: Public domain W3C validator