| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dvidlemap | Unicode version | ||
| Description: Lemma for dvid 15363 and dvconst 15362. (Contributed by Mario Carneiro, 8-Aug-2014.) (Revised by Jim Kingdon, 2-Aug-2023.) |
| Ref | Expression |
|---|---|
| dvidlem.1 |
|
| dvidlemap.2 |
|
| dvidlem.3 |
|
| Ref | Expression |
|---|---|
| dvidlemap |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvidlem.1 |
. . . . . 6
| |
| 2 | cnex 8119 |
. . . . . . 7
| |
| 3 | 2, 2 | fpm 6826 |
. . . . . 6
|
| 4 | 1, 3 | syl 14 |
. . . . 5
|
| 5 | dvfcnpm 15358 |
. . . . 5
| |
| 6 | 4, 5 | syl 14 |
. . . 4
|
| 7 | ssidd 3245 |
. . . . . . 7
| |
| 8 | 7, 1, 7 | dvbss 15353 |
. . . . . 6
|
| 9 | reldvg 15347 |
. . . . . . . . 9
| |
| 10 | 7, 4, 9 | syl2anc 411 |
. . . . . . . 8
|
| 11 | 10 | adantr 276 |
. . . . . . 7
|
| 12 | simpr 110 |
. . . . . . . . 9
| |
| 13 | eqid 2229 |
. . . . . . . . . . 11
| |
| 14 | 13 | cntoptop 15201 |
. . . . . . . . . 10
|
| 15 | 13 | cntoptopon 15200 |
. . . . . . . . . . . 12
|
| 16 | 15 | toponunii 14685 |
. . . . . . . . . . 11
|
| 17 | 16 | ntrtop 14796 |
. . . . . . . . . 10
|
| 18 | 14, 17 | ax-mp 5 |
. . . . . . . . 9
|
| 19 | 12, 18 | eleqtrrdi 2323 |
. . . . . . . 8
|
| 20 | limcresi 15334 |
. . . . . . . . . 10
| |
| 21 | dvidlem.3 |
. . . . . . . . . . . 12
| |
| 22 | ssidd 3245 |
. . . . . . . . . . . 12
| |
| 23 | cncfmptc 15264 |
. . . . . . . . . . . 12
| |
| 24 | 21, 22, 22, 23 | mp3an2i 1376 |
. . . . . . . . . . 11
|
| 25 | eqidd 2230 |
. . . . . . . . . . 11
| |
| 26 | 24, 12, 25 | cnmptlimc 15342 |
. . . . . . . . . 10
|
| 27 | 20, 26 | sselid 3222 |
. . . . . . . . 9
|
| 28 | breq1 4085 |
. . . . . . . . . . . . . 14
| |
| 29 | 28 | elrab 2959 |
. . . . . . . . . . . . 13
|
| 30 | dvidlemap.2 |
. . . . . . . . . . . . . . 15
| |
| 31 | 30 | 3exp2 1249 |
. . . . . . . . . . . . . 14
|
| 32 | 31 | imp43 355 |
. . . . . . . . . . . . 13
|
| 33 | 29, 32 | sylan2b 287 |
. . . . . . . . . . . 12
|
| 34 | 33 | mpteq2dva 4173 |
. . . . . . . . . . 11
|
| 35 | ssrab2 3309 |
. . . . . . . . . . . 12
| |
| 36 | resmpt 5052 |
. . . . . . . . . . . 12
| |
| 37 | 35, 36 | ax-mp 5 |
. . . . . . . . . . 11
|
| 38 | 34, 37 | eqtr4di 2280 |
. . . . . . . . . 10
|
| 39 | 38 | oveq1d 6015 |
. . . . . . . . 9
|
| 40 | 27, 39 | eleqtrrd 2309 |
. . . . . . . 8
|
| 41 | 15 | toponrestid 14689 |
. . . . . . . . 9
|
| 42 | eqid 2229 |
. . . . . . . . 9
| |
| 43 | 1 | adantr 276 |
. . . . . . . . 9
|
| 44 | 41, 13, 42, 22, 43, 22 | eldvap 15350 |
. . . . . . . 8
|
| 45 | 19, 40, 44 | mpbir2and 950 |
. . . . . . 7
|
| 46 | releldm 4958 |
. . . . . . 7
| |
| 47 | 11, 45, 46 | syl2anc 411 |
. . . . . 6
|
| 48 | 8, 47 | eqelssd 3243 |
. . . . 5
|
| 49 | 48 | feq2d 5460 |
. . . 4
|
| 50 | 6, 49 | mpbid 147 |
. . 3
|
| 51 | 50 | ffnd 5473 |
. 2
|
| 52 | fnconstg 5522 |
. . 3
| |
| 53 | 21, 52 | mp1i 10 |
. 2
|
| 54 | 6 | adantr 276 |
. . . . . 6
|
| 55 | 54 | ffund 5476 |
. . . . 5
|
| 56 | funbrfvb 5673 |
. . . . 5
| |
| 57 | 55, 47, 56 | syl2anc 411 |
. . . 4
|
| 58 | 45, 57 | mpbird 167 |
. . 3
|
| 59 | 21 | a1i 9 |
. . . 4
|
| 60 | fvconst2g 5852 |
. . . 4
| |
| 61 | 59, 60 | sylan 283 |
. . 3
|
| 62 | 58, 61 | eqtr4d 2265 |
. 2
|
| 63 | 51, 53, 62 | eqfnfvd 5734 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-iinf 4679 ax-cnex 8086 ax-resscn 8087 ax-1cn 8088 ax-1re 8089 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-mulrcl 8094 ax-addcom 8095 ax-mulcom 8096 ax-addass 8097 ax-mulass 8098 ax-distr 8099 ax-i2m1 8100 ax-0lt1 8101 ax-1rid 8102 ax-0id 8103 ax-rnegex 8104 ax-precex 8105 ax-cnre 8106 ax-pre-ltirr 8107 ax-pre-ltwlin 8108 ax-pre-lttrn 8109 ax-pre-apti 8110 ax-pre-ltadd 8111 ax-pre-mulgt0 8112 ax-pre-mulext 8113 ax-arch 8114 ax-caucvg 8115 |
| This theorem depends on definitions: df-bi 117 df-stab 836 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-tr 4182 df-id 4383 df-po 4386 df-iso 4387 df-iord 4456 df-on 4458 df-ilim 4459 df-suc 4461 df-iom 4682 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-fv 5325 df-isom 5326 df-riota 5953 df-ov 6003 df-oprab 6004 df-mpo 6005 df-1st 6284 df-2nd 6285 df-recs 6449 df-frec 6535 df-map 6795 df-pm 6796 df-sup 7147 df-inf 7148 df-pnf 8179 df-mnf 8180 df-xr 8181 df-ltxr 8182 df-le 8183 df-sub 8315 df-neg 8316 df-reap 8718 df-ap 8725 df-div 8816 df-inn 9107 df-2 9165 df-3 9166 df-4 9167 df-n0 9366 df-z 9443 df-uz 9719 df-q 9811 df-rp 9846 df-xneg 9964 df-xadd 9965 df-seqfrec 10665 df-exp 10756 df-cj 11348 df-re 11349 df-im 11350 df-rsqrt 11504 df-abs 11505 df-rest 13269 df-topgen 13288 df-psmet 14501 df-xmet 14502 df-met 14503 df-bl 14504 df-mopn 14505 df-top 14666 df-topon 14679 df-bases 14711 df-ntr 14764 df-cn 14856 df-cnp 14857 df-cncf 15239 df-limced 15324 df-dvap 15325 |
| This theorem is referenced by: dvconst 15362 dvid 15363 |
| Copyright terms: Public domain | W3C validator |