ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvmulxx Unicode version

Theorem dvmulxx 15378
Description: The product rule for derivatives at a point. For the (more general) relation version, see dvmulxxbr 15376. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Jim Kingdon, 2-Dec-2023.)
Hypotheses
Ref Expression
dvadd.f  |-  ( ph  ->  F : X --> CC )
dvadd.x  |-  ( ph  ->  X  C_  S )
dvaddxx.g  |-  ( ph  ->  G : X --> CC )
dvadd.s  |-  ( ph  ->  S  e.  { RR ,  CC } )
dvadd.df  |-  ( ph  ->  C  e.  dom  ( S  _D  F ) )
dvadd.dg  |-  ( ph  ->  C  e.  dom  ( S  _D  G ) )
Assertion
Ref Expression
dvmulxx  |-  ( ph  ->  ( ( S  _D  ( F  oF  x.  G ) ) `  C )  =  ( ( ( ( S  _D  F ) `  C )  x.  ( G `  C )
)  +  ( ( ( S  _D  G
) `  C )  x.  ( F `  C
) ) ) )

Proof of Theorem dvmulxx
Dummy variables  u  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvadd.s . . . 4  |-  ( ph  ->  S  e.  { RR ,  CC } )
2 cnex 8123 . . . . . 6  |-  CC  e.  _V
32a1i 9 . . . . 5  |-  ( ph  ->  CC  e.  _V )
4 mulcl 8126 . . . . . . 7  |-  ( ( u  e.  CC  /\  v  e.  CC )  ->  ( u  x.  v
)  e.  CC )
54adantl 277 . . . . . 6  |-  ( (
ph  /\  ( u  e.  CC  /\  v  e.  CC ) )  -> 
( u  x.  v
)  e.  CC )
6 dvadd.f . . . . . 6  |-  ( ph  ->  F : X --> CC )
7 dvaddxx.g . . . . . 6  |-  ( ph  ->  G : X --> CC )
8 dvadd.x . . . . . . 7  |-  ( ph  ->  X  C_  S )
91, 8ssexd 4224 . . . . . 6  |-  ( ph  ->  X  e.  _V )
10 inidm 3413 . . . . . 6  |-  ( X  i^i  X )  =  X
115, 6, 7, 9, 9, 10off 6231 . . . . 5  |-  ( ph  ->  ( F  oF  x.  G ) : X --> CC )
12 elpm2r 6813 . . . . 5  |-  ( ( ( CC  e.  _V  /\  S  e.  { RR ,  CC } )  /\  ( ( F  oF  x.  G ) : X --> CC  /\  X  C_  S ) )  -> 
( F  oF  x.  G )  e.  ( CC  ^pm  S
) )
133, 1, 11, 8, 12syl22anc 1272 . . . 4  |-  ( ph  ->  ( F  oF  x.  G )  e.  ( CC  ^pm  S
) )
14 dvfgg 15362 . . . 4  |-  ( ( S  e.  { RR ,  CC }  /\  ( F  oF  x.  G
)  e.  ( CC 
^pm  S ) )  ->  ( S  _D  ( F  oF  x.  G ) ) : dom  ( S  _D  ( F  oF  x.  G ) ) --> CC )
151, 13, 14syl2anc 411 . . 3  |-  ( ph  ->  ( S  _D  ( F  oF  x.  G
) ) : dom  ( S  _D  ( F  oF  x.  G
) ) --> CC )
1615ffund 5477 . 2  |-  ( ph  ->  Fun  ( S  _D  ( F  oF  x.  G ) ) )
17 recnprss 15361 . . . 4  |-  ( S  e.  { RR ,  CC }  ->  S  C_  CC )
181, 17syl 14 . . 3  |-  ( ph  ->  S  C_  CC )
19 dvadd.df . . . 4  |-  ( ph  ->  C  e.  dom  ( S  _D  F ) )
20 elpm2r 6813 . . . . . . 7  |-  ( ( ( CC  e.  _V  /\  S  e.  { RR ,  CC } )  /\  ( F : X --> CC  /\  X  C_  S ) )  ->  F  e.  ( CC  ^pm  S )
)
213, 1, 6, 8, 20syl22anc 1272 . . . . . 6  |-  ( ph  ->  F  e.  ( CC 
^pm  S ) )
22 dvfgg 15362 . . . . . 6  |-  ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm  S
) )  ->  ( S  _D  F ) : dom  ( S  _D  F ) --> CC )
231, 21, 22syl2anc 411 . . . . 5  |-  ( ph  ->  ( S  _D  F
) : dom  ( S  _D  F ) --> CC )
24 ffun 5476 . . . . 5  |-  ( ( S  _D  F ) : dom  ( S  _D  F ) --> CC 
->  Fun  ( S  _D  F ) )
25 funfvbrb 5748 . . . . 5  |-  ( Fun  ( S  _D  F
)  ->  ( C  e.  dom  ( S  _D  F )  <->  C ( S  _D  F ) ( ( S  _D  F
) `  C )
) )
2623, 24, 253syl 17 . . . 4  |-  ( ph  ->  ( C  e.  dom  ( S  _D  F
)  <->  C ( S  _D  F ) ( ( S  _D  F ) `
 C ) ) )
2719, 26mpbid 147 . . 3  |-  ( ph  ->  C ( S  _D  F ) ( ( S  _D  F ) `
 C ) )
28 dvadd.dg . . . 4  |-  ( ph  ->  C  e.  dom  ( S  _D  G ) )
29 elpm2r 6813 . . . . . . 7  |-  ( ( ( CC  e.  _V  /\  S  e.  { RR ,  CC } )  /\  ( G : X --> CC  /\  X  C_  S ) )  ->  G  e.  ( CC  ^pm  S )
)
303, 1, 7, 8, 29syl22anc 1272 . . . . . 6  |-  ( ph  ->  G  e.  ( CC 
^pm  S ) )
31 dvfgg 15362 . . . . . 6  |-  ( ( S  e.  { RR ,  CC }  /\  G  e.  ( CC  ^pm  S
) )  ->  ( S  _D  G ) : dom  ( S  _D  G ) --> CC )
321, 30, 31syl2anc 411 . . . . 5  |-  ( ph  ->  ( S  _D  G
) : dom  ( S  _D  G ) --> CC )
33 ffun 5476 . . . . 5  |-  ( ( S  _D  G ) : dom  ( S  _D  G ) --> CC 
->  Fun  ( S  _D  G ) )
34 funfvbrb 5748 . . . . 5  |-  ( Fun  ( S  _D  G
)  ->  ( C  e.  dom  ( S  _D  G )  <->  C ( S  _D  G ) ( ( S  _D  G
) `  C )
) )
3532, 33, 343syl 17 . . . 4  |-  ( ph  ->  ( C  e.  dom  ( S  _D  G
)  <->  C ( S  _D  G ) ( ( S  _D  G ) `
 C ) ) )
3628, 35mpbid 147 . . 3  |-  ( ph  ->  C ( S  _D  G ) ( ( S  _D  G ) `
 C ) )
37 eqid 2229 . . 3  |-  ( MetOpen `  ( abs  o.  -  )
)  =  ( MetOpen `  ( abs  o.  -  )
)
386, 8, 7, 18, 27, 36, 37dvmulxxbr 15376 . 2  |-  ( ph  ->  C ( S  _D  ( F  oF  x.  G ) ) ( ( ( ( S  _D  F ) `  C )  x.  ( G `  C )
)  +  ( ( ( S  _D  G
) `  C )  x.  ( F `  C
) ) ) )
39 funbrfv 5670 . 2  |-  ( Fun  ( S  _D  ( F  oF  x.  G
) )  ->  ( C ( S  _D  ( F  oF  x.  G ) ) ( ( ( ( S  _D  F ) `  C )  x.  ( G `  C )
)  +  ( ( ( S  _D  G
) `  C )  x.  ( F `  C
) ) )  -> 
( ( S  _D  ( F  oF  x.  G ) ) `  C )  =  ( ( ( ( S  _D  F ) `  C )  x.  ( G `  C )
)  +  ( ( ( S  _D  G
) `  C )  x.  ( F `  C
) ) ) ) )
4016, 38, 39sylc 62 1  |-  ( ph  ->  ( ( S  _D  ( F  oF  x.  G ) ) `  C )  =  ( ( ( ( S  _D  F ) `  C )  x.  ( G `  C )
)  +  ( ( ( S  _D  G
) `  C )  x.  ( F `  C
) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1395    e. wcel 2200   _Vcvv 2799    C_ wss 3197   {cpr 3667   class class class wbr 4083   dom cdm 4719    o. ccom 4723   Fun wfun 5312   -->wf 5314   ` cfv 5318  (class class class)co 6001    oFcof 6216    ^pm cpm 6796   CCcc 7997   RRcr 7998    + caddc 8002    x. cmul 8004    - cmin 8317   abscabs 11508   MetOpencmopn 14505    _D cdv 15329
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-mulrcl 8098  ax-addcom 8099  ax-mulcom 8100  ax-addass 8101  ax-mulass 8102  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-1rid 8106  ax-0id 8107  ax-rnegex 8108  ax-precex 8109  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-apti 8114  ax-pre-ltadd 8115  ax-pre-mulgt0 8116  ax-pre-mulext 8117  ax-arch 8118  ax-caucvg 8119  ax-addf 8121  ax-mulf 8122
This theorem depends on definitions:  df-bi 117  df-stab 836  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-po 4387  df-iso 4388  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-isom 5327  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-of 6218  df-1st 6286  df-2nd 6287  df-recs 6451  df-frec 6537  df-map 6797  df-pm 6798  df-sup 7151  df-inf 7152  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-reap 8722  df-ap 8729  df-div 8820  df-inn 9111  df-2 9169  df-3 9170  df-4 9171  df-n0 9370  df-z 9447  df-uz 9723  df-q 9815  df-rp 9850  df-xneg 9968  df-xadd 9969  df-seqfrec 10670  df-exp 10761  df-cj 11353  df-re 11354  df-im 11355  df-rsqrt 11509  df-abs 11510  df-rest 13274  df-topgen 13293  df-psmet 14507  df-xmet 14508  df-met 14509  df-bl 14510  df-mopn 14511  df-top 14672  df-topon 14685  df-bases 14717  df-ntr 14770  df-cn 14862  df-cnp 14863  df-tx 14927  df-cncf 15245  df-limced 15330  df-dvap 15331
This theorem is referenced by:  dvimulf  15380
  Copyright terms: Public domain W3C validator