ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvmulxx Unicode version

Theorem dvmulxx 14853
Description: The product rule for derivatives at a point. For the (more general) relation version, see dvmulxxbr 14851. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Jim Kingdon, 2-Dec-2023.)
Hypotheses
Ref Expression
dvadd.f  |-  ( ph  ->  F : X --> CC )
dvadd.x  |-  ( ph  ->  X  C_  S )
dvaddxx.g  |-  ( ph  ->  G : X --> CC )
dvadd.s  |-  ( ph  ->  S  e.  { RR ,  CC } )
dvadd.df  |-  ( ph  ->  C  e.  dom  ( S  _D  F ) )
dvadd.dg  |-  ( ph  ->  C  e.  dom  ( S  _D  G ) )
Assertion
Ref Expression
dvmulxx  |-  ( ph  ->  ( ( S  _D  ( F  oF  x.  G ) ) `  C )  =  ( ( ( ( S  _D  F ) `  C )  x.  ( G `  C )
)  +  ( ( ( S  _D  G
) `  C )  x.  ( F `  C
) ) ) )

Proof of Theorem dvmulxx
Dummy variables  u  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvadd.s . . . 4  |-  ( ph  ->  S  e.  { RR ,  CC } )
2 cnex 7996 . . . . . 6  |-  CC  e.  _V
32a1i 9 . . . . 5  |-  ( ph  ->  CC  e.  _V )
4 mulcl 7999 . . . . . . 7  |-  ( ( u  e.  CC  /\  v  e.  CC )  ->  ( u  x.  v
)  e.  CC )
54adantl 277 . . . . . 6  |-  ( (
ph  /\  ( u  e.  CC  /\  v  e.  CC ) )  -> 
( u  x.  v
)  e.  CC )
6 dvadd.f . . . . . 6  |-  ( ph  ->  F : X --> CC )
7 dvaddxx.g . . . . . 6  |-  ( ph  ->  G : X --> CC )
8 dvadd.x . . . . . . 7  |-  ( ph  ->  X  C_  S )
91, 8ssexd 4169 . . . . . 6  |-  ( ph  ->  X  e.  _V )
10 inidm 3368 . . . . . 6  |-  ( X  i^i  X )  =  X
115, 6, 7, 9, 9, 10off 6143 . . . . 5  |-  ( ph  ->  ( F  oF  x.  G ) : X --> CC )
12 elpm2r 6720 . . . . 5  |-  ( ( ( CC  e.  _V  /\  S  e.  { RR ,  CC } )  /\  ( ( F  oF  x.  G ) : X --> CC  /\  X  C_  S ) )  -> 
( F  oF  x.  G )  e.  ( CC  ^pm  S
) )
133, 1, 11, 8, 12syl22anc 1250 . . . 4  |-  ( ph  ->  ( F  oF  x.  G )  e.  ( CC  ^pm  S
) )
14 dvfgg 14842 . . . 4  |-  ( ( S  e.  { RR ,  CC }  /\  ( F  oF  x.  G
)  e.  ( CC 
^pm  S ) )  ->  ( S  _D  ( F  oF  x.  G ) ) : dom  ( S  _D  ( F  oF  x.  G ) ) --> CC )
151, 13, 14syl2anc 411 . . 3  |-  ( ph  ->  ( S  _D  ( F  oF  x.  G
) ) : dom  ( S  _D  ( F  oF  x.  G
) ) --> CC )
1615ffund 5407 . 2  |-  ( ph  ->  Fun  ( S  _D  ( F  oF  x.  G ) ) )
17 recnprss 14841 . . . 4  |-  ( S  e.  { RR ,  CC }  ->  S  C_  CC )
181, 17syl 14 . . 3  |-  ( ph  ->  S  C_  CC )
19 dvadd.df . . . 4  |-  ( ph  ->  C  e.  dom  ( S  _D  F ) )
20 elpm2r 6720 . . . . . . 7  |-  ( ( ( CC  e.  _V  /\  S  e.  { RR ,  CC } )  /\  ( F : X --> CC  /\  X  C_  S ) )  ->  F  e.  ( CC  ^pm  S )
)
213, 1, 6, 8, 20syl22anc 1250 . . . . . 6  |-  ( ph  ->  F  e.  ( CC 
^pm  S ) )
22 dvfgg 14842 . . . . . 6  |-  ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm  S
) )  ->  ( S  _D  F ) : dom  ( S  _D  F ) --> CC )
231, 21, 22syl2anc 411 . . . . 5  |-  ( ph  ->  ( S  _D  F
) : dom  ( S  _D  F ) --> CC )
24 ffun 5406 . . . . 5  |-  ( ( S  _D  F ) : dom  ( S  _D  F ) --> CC 
->  Fun  ( S  _D  F ) )
25 funfvbrb 5671 . . . . 5  |-  ( Fun  ( S  _D  F
)  ->  ( C  e.  dom  ( S  _D  F )  <->  C ( S  _D  F ) ( ( S  _D  F
) `  C )
) )
2623, 24, 253syl 17 . . . 4  |-  ( ph  ->  ( C  e.  dom  ( S  _D  F
)  <->  C ( S  _D  F ) ( ( S  _D  F ) `
 C ) ) )
2719, 26mpbid 147 . . 3  |-  ( ph  ->  C ( S  _D  F ) ( ( S  _D  F ) `
 C ) )
28 dvadd.dg . . . 4  |-  ( ph  ->  C  e.  dom  ( S  _D  G ) )
29 elpm2r 6720 . . . . . . 7  |-  ( ( ( CC  e.  _V  /\  S  e.  { RR ,  CC } )  /\  ( G : X --> CC  /\  X  C_  S ) )  ->  G  e.  ( CC  ^pm  S )
)
303, 1, 7, 8, 29syl22anc 1250 . . . . . 6  |-  ( ph  ->  G  e.  ( CC 
^pm  S ) )
31 dvfgg 14842 . . . . . 6  |-  ( ( S  e.  { RR ,  CC }  /\  G  e.  ( CC  ^pm  S
) )  ->  ( S  _D  G ) : dom  ( S  _D  G ) --> CC )
321, 30, 31syl2anc 411 . . . . 5  |-  ( ph  ->  ( S  _D  G
) : dom  ( S  _D  G ) --> CC )
33 ffun 5406 . . . . 5  |-  ( ( S  _D  G ) : dom  ( S  _D  G ) --> CC 
->  Fun  ( S  _D  G ) )
34 funfvbrb 5671 . . . . 5  |-  ( Fun  ( S  _D  G
)  ->  ( C  e.  dom  ( S  _D  G )  <->  C ( S  _D  G ) ( ( S  _D  G
) `  C )
) )
3532, 33, 343syl 17 . . . 4  |-  ( ph  ->  ( C  e.  dom  ( S  _D  G
)  <->  C ( S  _D  G ) ( ( S  _D  G ) `
 C ) ) )
3628, 35mpbid 147 . . 3  |-  ( ph  ->  C ( S  _D  G ) ( ( S  _D  G ) `
 C ) )
37 eqid 2193 . . 3  |-  ( MetOpen `  ( abs  o.  -  )
)  =  ( MetOpen `  ( abs  o.  -  )
)
386, 8, 7, 18, 27, 36, 37dvmulxxbr 14851 . 2  |-  ( ph  ->  C ( S  _D  ( F  oF  x.  G ) ) ( ( ( ( S  _D  F ) `  C )  x.  ( G `  C )
)  +  ( ( ( S  _D  G
) `  C )  x.  ( F `  C
) ) ) )
39 funbrfv 5595 . 2  |-  ( Fun  ( S  _D  ( F  oF  x.  G
) )  ->  ( C ( S  _D  ( F  oF  x.  G ) ) ( ( ( ( S  _D  F ) `  C )  x.  ( G `  C )
)  +  ( ( ( S  _D  G
) `  C )  x.  ( F `  C
) ) )  -> 
( ( S  _D  ( F  oF  x.  G ) ) `  C )  =  ( ( ( ( S  _D  F ) `  C )  x.  ( G `  C )
)  +  ( ( ( S  _D  G
) `  C )  x.  ( F `  C
) ) ) ) )
4016, 38, 39sylc 62 1  |-  ( ph  ->  ( ( S  _D  ( F  oF  x.  G ) ) `  C )  =  ( ( ( ( S  _D  F ) `  C )  x.  ( G `  C )
)  +  ( ( ( S  _D  G
) `  C )  x.  ( F `  C
) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2164   _Vcvv 2760    C_ wss 3153   {cpr 3619   class class class wbr 4029   dom cdm 4659    o. ccom 4663   Fun wfun 5248   -->wf 5250   ` cfv 5254  (class class class)co 5918    oFcof 6128    ^pm cpm 6703   CCcc 7870   RRcr 7871    + caddc 7875    x. cmul 7877    - cmin 8190   abscabs 11141   MetOpencmopn 14037    _D cdv 14809
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988  ax-pre-mulgt0 7989  ax-pre-mulext 7990  ax-arch 7991  ax-caucvg 7992  ax-addf 7994  ax-mulf 7995
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-po 4327  df-iso 4328  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-isom 5263  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-of 6130  df-1st 6193  df-2nd 6194  df-recs 6358  df-frec 6444  df-map 6704  df-pm 6705  df-sup 7043  df-inf 7044  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-reap 8594  df-ap 8601  df-div 8692  df-inn 8983  df-2 9041  df-3 9042  df-4 9043  df-n0 9241  df-z 9318  df-uz 9593  df-q 9685  df-rp 9720  df-xneg 9838  df-xadd 9839  df-seqfrec 10519  df-exp 10610  df-cj 10986  df-re 10987  df-im 10988  df-rsqrt 11142  df-abs 11143  df-rest 12852  df-topgen 12871  df-psmet 14039  df-xmet 14040  df-met 14041  df-bl 14042  df-mopn 14043  df-top 14166  df-topon 14179  df-bases 14211  df-ntr 14264  df-cn 14356  df-cnp 14357  df-tx 14421  df-cncf 14726  df-limced 14810  df-dvap 14811
This theorem is referenced by:  dvimulf  14855
  Copyright terms: Public domain W3C validator