ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvaddxx Unicode version

Theorem dvaddxx 13747
Description: The sum rule for derivatives at a point. For the (more general) relation version, see dvaddxxbr 13745. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Jim Kingdon, 25-Nov-2023.)
Hypotheses
Ref Expression
dvadd.f  |-  ( ph  ->  F : X --> CC )
dvadd.x  |-  ( ph  ->  X  C_  S )
dvaddxx.g  |-  ( ph  ->  G : X --> CC )
dvadd.s  |-  ( ph  ->  S  e.  { RR ,  CC } )
dvadd.df  |-  ( ph  ->  C  e.  dom  ( S  _D  F ) )
dvadd.dg  |-  ( ph  ->  C  e.  dom  ( S  _D  G ) )
Assertion
Ref Expression
dvaddxx  |-  ( ph  ->  ( ( S  _D  ( F  oF  +  G ) ) `  C )  =  ( ( ( S  _D  F ) `  C
)  +  ( ( S  _D  G ) `
 C ) ) )

Proof of Theorem dvaddxx
Dummy variables  u  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvadd.s . . . 4  |-  ( ph  ->  S  e.  { RR ,  CC } )
2 cnex 7910 . . . . . 6  |-  CC  e.  _V
32a1i 9 . . . . 5  |-  ( ph  ->  CC  e.  _V )
4 addcl 7911 . . . . . . 7  |-  ( ( u  e.  CC  /\  v  e.  CC )  ->  ( u  +  v )  e.  CC )
54adantl 277 . . . . . 6  |-  ( (
ph  /\  ( u  e.  CC  /\  v  e.  CC ) )  -> 
( u  +  v )  e.  CC )
6 dvadd.f . . . . . 6  |-  ( ph  ->  F : X --> CC )
7 dvaddxx.g . . . . . 6  |-  ( ph  ->  G : X --> CC )
8 dvadd.x . . . . . . 7  |-  ( ph  ->  X  C_  S )
91, 8ssexd 4138 . . . . . 6  |-  ( ph  ->  X  e.  _V )
10 inidm 3342 . . . . . 6  |-  ( X  i^i  X )  =  X
115, 6, 7, 9, 9, 10off 6085 . . . . 5  |-  ( ph  ->  ( F  oF  +  G ) : X --> CC )
12 elpm2r 6656 . . . . 5  |-  ( ( ( CC  e.  _V  /\  S  e.  { RR ,  CC } )  /\  ( ( F  oF  +  G ) : X --> CC  /\  X  C_  S ) )  -> 
( F  oF  +  G )  e.  ( CC  ^pm  S
) )
133, 1, 11, 8, 12syl22anc 1239 . . . 4  |-  ( ph  ->  ( F  oF  +  G )  e.  ( CC  ^pm  S
) )
14 dvfgg 13737 . . . 4  |-  ( ( S  e.  { RR ,  CC }  /\  ( F  oF  +  G
)  e.  ( CC 
^pm  S ) )  ->  ( S  _D  ( F  oF  +  G ) ) : dom  ( S  _D  ( F  oF  +  G ) ) --> CC )
151, 13, 14syl2anc 411 . . 3  |-  ( ph  ->  ( S  _D  ( F  oF  +  G
) ) : dom  ( S  _D  ( F  oF  +  G
) ) --> CC )
1615ffund 5361 . 2  |-  ( ph  ->  Fun  ( S  _D  ( F  oF  +  G ) ) )
17 recnprss 13736 . . . 4  |-  ( S  e.  { RR ,  CC }  ->  S  C_  CC )
181, 17syl 14 . . 3  |-  ( ph  ->  S  C_  CC )
19 dvadd.df . . . 4  |-  ( ph  ->  C  e.  dom  ( S  _D  F ) )
20 elpm2r 6656 . . . . . . 7  |-  ( ( ( CC  e.  _V  /\  S  e.  { RR ,  CC } )  /\  ( F : X --> CC  /\  X  C_  S ) )  ->  F  e.  ( CC  ^pm  S )
)
213, 1, 6, 8, 20syl22anc 1239 . . . . . 6  |-  ( ph  ->  F  e.  ( CC 
^pm  S ) )
22 dvfgg 13737 . . . . . 6  |-  ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm  S
) )  ->  ( S  _D  F ) : dom  ( S  _D  F ) --> CC )
231, 21, 22syl2anc 411 . . . . 5  |-  ( ph  ->  ( S  _D  F
) : dom  ( S  _D  F ) --> CC )
24 ffun 5360 . . . . 5  |-  ( ( S  _D  F ) : dom  ( S  _D  F ) --> CC 
->  Fun  ( S  _D  F ) )
25 funfvbrb 5621 . . . . 5  |-  ( Fun  ( S  _D  F
)  ->  ( C  e.  dom  ( S  _D  F )  <->  C ( S  _D  F ) ( ( S  _D  F
) `  C )
) )
2623, 24, 253syl 17 . . . 4  |-  ( ph  ->  ( C  e.  dom  ( S  _D  F
)  <->  C ( S  _D  F ) ( ( S  _D  F ) `
 C ) ) )
2719, 26mpbid 147 . . 3  |-  ( ph  ->  C ( S  _D  F ) ( ( S  _D  F ) `
 C ) )
28 dvadd.dg . . . 4  |-  ( ph  ->  C  e.  dom  ( S  _D  G ) )
29 elpm2r 6656 . . . . . . 7  |-  ( ( ( CC  e.  _V  /\  S  e.  { RR ,  CC } )  /\  ( G : X --> CC  /\  X  C_  S ) )  ->  G  e.  ( CC  ^pm  S )
)
303, 1, 7, 8, 29syl22anc 1239 . . . . . 6  |-  ( ph  ->  G  e.  ( CC 
^pm  S ) )
31 dvfgg 13737 . . . . . 6  |-  ( ( S  e.  { RR ,  CC }  /\  G  e.  ( CC  ^pm  S
) )  ->  ( S  _D  G ) : dom  ( S  _D  G ) --> CC )
321, 30, 31syl2anc 411 . . . . 5  |-  ( ph  ->  ( S  _D  G
) : dom  ( S  _D  G ) --> CC )
33 ffun 5360 . . . . 5  |-  ( ( S  _D  G ) : dom  ( S  _D  G ) --> CC 
->  Fun  ( S  _D  G ) )
34 funfvbrb 5621 . . . . 5  |-  ( Fun  ( S  _D  G
)  ->  ( C  e.  dom  ( S  _D  G )  <->  C ( S  _D  G ) ( ( S  _D  G
) `  C )
) )
3532, 33, 343syl 17 . . . 4  |-  ( ph  ->  ( C  e.  dom  ( S  _D  G
)  <->  C ( S  _D  G ) ( ( S  _D  G ) `
 C ) ) )
3628, 35mpbid 147 . . 3  |-  ( ph  ->  C ( S  _D  G ) ( ( S  _D  G ) `
 C ) )
37 eqid 2175 . . 3  |-  ( MetOpen `  ( abs  o.  -  )
)  =  ( MetOpen `  ( abs  o.  -  )
)
386, 8, 7, 18, 27, 36, 37dvaddxxbr 13745 . 2  |-  ( ph  ->  C ( S  _D  ( F  oF  +  G ) ) ( ( ( S  _D  F ) `  C
)  +  ( ( S  _D  G ) `
 C ) ) )
39 funbrfv 5546 . 2  |-  ( Fun  ( S  _D  ( F  oF  +  G
) )  ->  ( C ( S  _D  ( F  oF  +  G ) ) ( ( ( S  _D  F ) `  C
)  +  ( ( S  _D  G ) `
 C ) )  ->  ( ( S  _D  ( F  oF  +  G )
) `  C )  =  ( ( ( S  _D  F ) `
 C )  +  ( ( S  _D  G ) `  C
) ) ) )
4016, 38, 39sylc 62 1  |-  ( ph  ->  ( ( S  _D  ( F  oF  +  G ) ) `  C )  =  ( ( ( S  _D  F ) `  C
)  +  ( ( S  _D  G ) `
 C ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1353    e. wcel 2146   _Vcvv 2735    C_ wss 3127   {cpr 3590   class class class wbr 3998   dom cdm 4620    o. ccom 4624   Fun wfun 5202   -->wf 5204   ` cfv 5208  (class class class)co 5865    oFcof 6071    ^pm cpm 6639   CCcc 7784   RRcr 7785    + caddc 7789    - cmin 8102   abscabs 10974   MetOpencmopn 13065    _D cdv 13704
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-coll 4113  ax-sep 4116  ax-nul 4124  ax-pow 4169  ax-pr 4203  ax-un 4427  ax-setind 4530  ax-iinf 4581  ax-cnex 7877  ax-resscn 7878  ax-1cn 7879  ax-1re 7880  ax-icn 7881  ax-addcl 7882  ax-addrcl 7883  ax-mulcl 7884  ax-mulrcl 7885  ax-addcom 7886  ax-mulcom 7887  ax-addass 7888  ax-mulass 7889  ax-distr 7890  ax-i2m1 7891  ax-0lt1 7892  ax-1rid 7893  ax-0id 7894  ax-rnegex 7895  ax-precex 7896  ax-cnre 7897  ax-pre-ltirr 7898  ax-pre-ltwlin 7899  ax-pre-lttrn 7900  ax-pre-apti 7901  ax-pre-ltadd 7902  ax-pre-mulgt0 7903  ax-pre-mulext 7904  ax-arch 7905  ax-caucvg 7906  ax-addf 7908
This theorem depends on definitions:  df-bi 117  df-stab 831  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ne 2346  df-nel 2441  df-ral 2458  df-rex 2459  df-reu 2460  df-rmo 2461  df-rab 2462  df-v 2737  df-sbc 2961  df-csb 3056  df-dif 3129  df-un 3131  df-in 3133  df-ss 3140  df-nul 3421  df-if 3533  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-int 3841  df-iun 3884  df-br 3999  df-opab 4060  df-mpt 4061  df-tr 4097  df-id 4287  df-po 4290  df-iso 4291  df-iord 4360  df-on 4362  df-ilim 4363  df-suc 4365  df-iom 4584  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-res 4632  df-ima 4633  df-iota 5170  df-fun 5210  df-fn 5211  df-f 5212  df-f1 5213  df-fo 5214  df-f1o 5215  df-fv 5216  df-isom 5217  df-riota 5821  df-ov 5868  df-oprab 5869  df-mpo 5870  df-of 6073  df-1st 6131  df-2nd 6132  df-recs 6296  df-frec 6382  df-map 6640  df-pm 6641  df-sup 6973  df-inf 6974  df-pnf 7968  df-mnf 7969  df-xr 7970  df-ltxr 7971  df-le 7972  df-sub 8104  df-neg 8105  df-reap 8506  df-ap 8513  df-div 8603  df-inn 8893  df-2 8951  df-3 8952  df-4 8953  df-n0 9150  df-z 9227  df-uz 9502  df-q 9593  df-rp 9625  df-xneg 9743  df-xadd 9744  df-seqfrec 10416  df-exp 10490  df-cj 10819  df-re 10820  df-im 10821  df-rsqrt 10975  df-abs 10976  df-rest 12621  df-topgen 12640  df-psmet 13067  df-xmet 13068  df-met 13069  df-bl 13070  df-mopn 13071  df-top 13076  df-topon 13089  df-bases 13121  df-ntr 13176  df-cn 13268  df-cnp 13269  df-tx 13333  df-limced 13705  df-dvap 13706
This theorem is referenced by:  dviaddf  13749
  Copyright terms: Public domain W3C validator