ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvaddxx Unicode version

Theorem dvaddxx 14627
Description: The sum rule for derivatives at a point. For the (more general) relation version, see dvaddxxbr 14625. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Jim Kingdon, 25-Nov-2023.)
Hypotheses
Ref Expression
dvadd.f  |-  ( ph  ->  F : X --> CC )
dvadd.x  |-  ( ph  ->  X  C_  S )
dvaddxx.g  |-  ( ph  ->  G : X --> CC )
dvadd.s  |-  ( ph  ->  S  e.  { RR ,  CC } )
dvadd.df  |-  ( ph  ->  C  e.  dom  ( S  _D  F ) )
dvadd.dg  |-  ( ph  ->  C  e.  dom  ( S  _D  G ) )
Assertion
Ref Expression
dvaddxx  |-  ( ph  ->  ( ( S  _D  ( F  oF  +  G ) ) `  C )  =  ( ( ( S  _D  F ) `  C
)  +  ( ( S  _D  G ) `
 C ) ) )

Proof of Theorem dvaddxx
Dummy variables  u  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvadd.s . . . 4  |-  ( ph  ->  S  e.  { RR ,  CC } )
2 cnex 7965 . . . . . 6  |-  CC  e.  _V
32a1i 9 . . . . 5  |-  ( ph  ->  CC  e.  _V )
4 addcl 7966 . . . . . . 7  |-  ( ( u  e.  CC  /\  v  e.  CC )  ->  ( u  +  v )  e.  CC )
54adantl 277 . . . . . 6  |-  ( (
ph  /\  ( u  e.  CC  /\  v  e.  CC ) )  -> 
( u  +  v )  e.  CC )
6 dvadd.f . . . . . 6  |-  ( ph  ->  F : X --> CC )
7 dvaddxx.g . . . . . 6  |-  ( ph  ->  G : X --> CC )
8 dvadd.x . . . . . . 7  |-  ( ph  ->  X  C_  S )
91, 8ssexd 4158 . . . . . 6  |-  ( ph  ->  X  e.  _V )
10 inidm 3359 . . . . . 6  |-  ( X  i^i  X )  =  X
115, 6, 7, 9, 9, 10off 6119 . . . . 5  |-  ( ph  ->  ( F  oF  +  G ) : X --> CC )
12 elpm2r 6692 . . . . 5  |-  ( ( ( CC  e.  _V  /\  S  e.  { RR ,  CC } )  /\  ( ( F  oF  +  G ) : X --> CC  /\  X  C_  S ) )  -> 
( F  oF  +  G )  e.  ( CC  ^pm  S
) )
133, 1, 11, 8, 12syl22anc 1250 . . . 4  |-  ( ph  ->  ( F  oF  +  G )  e.  ( CC  ^pm  S
) )
14 dvfgg 14617 . . . 4  |-  ( ( S  e.  { RR ,  CC }  /\  ( F  oF  +  G
)  e.  ( CC 
^pm  S ) )  ->  ( S  _D  ( F  oF  +  G ) ) : dom  ( S  _D  ( F  oF  +  G ) ) --> CC )
151, 13, 14syl2anc 411 . . 3  |-  ( ph  ->  ( S  _D  ( F  oF  +  G
) ) : dom  ( S  _D  ( F  oF  +  G
) ) --> CC )
1615ffund 5388 . 2  |-  ( ph  ->  Fun  ( S  _D  ( F  oF  +  G ) ) )
17 recnprss 14616 . . . 4  |-  ( S  e.  { RR ,  CC }  ->  S  C_  CC )
181, 17syl 14 . . 3  |-  ( ph  ->  S  C_  CC )
19 dvadd.df . . . 4  |-  ( ph  ->  C  e.  dom  ( S  _D  F ) )
20 elpm2r 6692 . . . . . . 7  |-  ( ( ( CC  e.  _V  /\  S  e.  { RR ,  CC } )  /\  ( F : X --> CC  /\  X  C_  S ) )  ->  F  e.  ( CC  ^pm  S )
)
213, 1, 6, 8, 20syl22anc 1250 . . . . . 6  |-  ( ph  ->  F  e.  ( CC 
^pm  S ) )
22 dvfgg 14617 . . . . . 6  |-  ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm  S
) )  ->  ( S  _D  F ) : dom  ( S  _D  F ) --> CC )
231, 21, 22syl2anc 411 . . . . 5  |-  ( ph  ->  ( S  _D  F
) : dom  ( S  _D  F ) --> CC )
24 ffun 5387 . . . . 5  |-  ( ( S  _D  F ) : dom  ( S  _D  F ) --> CC 
->  Fun  ( S  _D  F ) )
25 funfvbrb 5650 . . . . 5  |-  ( Fun  ( S  _D  F
)  ->  ( C  e.  dom  ( S  _D  F )  <->  C ( S  _D  F ) ( ( S  _D  F
) `  C )
) )
2623, 24, 253syl 17 . . . 4  |-  ( ph  ->  ( C  e.  dom  ( S  _D  F
)  <->  C ( S  _D  F ) ( ( S  _D  F ) `
 C ) ) )
2719, 26mpbid 147 . . 3  |-  ( ph  ->  C ( S  _D  F ) ( ( S  _D  F ) `
 C ) )
28 dvadd.dg . . . 4  |-  ( ph  ->  C  e.  dom  ( S  _D  G ) )
29 elpm2r 6692 . . . . . . 7  |-  ( ( ( CC  e.  _V  /\  S  e.  { RR ,  CC } )  /\  ( G : X --> CC  /\  X  C_  S ) )  ->  G  e.  ( CC  ^pm  S )
)
303, 1, 7, 8, 29syl22anc 1250 . . . . . 6  |-  ( ph  ->  G  e.  ( CC 
^pm  S ) )
31 dvfgg 14617 . . . . . 6  |-  ( ( S  e.  { RR ,  CC }  /\  G  e.  ( CC  ^pm  S
) )  ->  ( S  _D  G ) : dom  ( S  _D  G ) --> CC )
321, 30, 31syl2anc 411 . . . . 5  |-  ( ph  ->  ( S  _D  G
) : dom  ( S  _D  G ) --> CC )
33 ffun 5387 . . . . 5  |-  ( ( S  _D  G ) : dom  ( S  _D  G ) --> CC 
->  Fun  ( S  _D  G ) )
34 funfvbrb 5650 . . . . 5  |-  ( Fun  ( S  _D  G
)  ->  ( C  e.  dom  ( S  _D  G )  <->  C ( S  _D  G ) ( ( S  _D  G
) `  C )
) )
3532, 33, 343syl 17 . . . 4  |-  ( ph  ->  ( C  e.  dom  ( S  _D  G
)  <->  C ( S  _D  G ) ( ( S  _D  G ) `
 C ) ) )
3628, 35mpbid 147 . . 3  |-  ( ph  ->  C ( S  _D  G ) ( ( S  _D  G ) `
 C ) )
37 eqid 2189 . . 3  |-  ( MetOpen `  ( abs  o.  -  )
)  =  ( MetOpen `  ( abs  o.  -  )
)
386, 8, 7, 18, 27, 36, 37dvaddxxbr 14625 . 2  |-  ( ph  ->  C ( S  _D  ( F  oF  +  G ) ) ( ( ( S  _D  F ) `  C
)  +  ( ( S  _D  G ) `
 C ) ) )
39 funbrfv 5575 . 2  |-  ( Fun  ( S  _D  ( F  oF  +  G
) )  ->  ( C ( S  _D  ( F  oF  +  G ) ) ( ( ( S  _D  F ) `  C
)  +  ( ( S  _D  G ) `
 C ) )  ->  ( ( S  _D  ( F  oF  +  G )
) `  C )  =  ( ( ( S  _D  F ) `
 C )  +  ( ( S  _D  G ) `  C
) ) ) )
4016, 38, 39sylc 62 1  |-  ( ph  ->  ( ( S  _D  ( F  oF  +  G ) ) `  C )  =  ( ( ( S  _D  F ) `  C
)  +  ( ( S  _D  G ) `
 C ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2160   _Vcvv 2752    C_ wss 3144   {cpr 3608   class class class wbr 4018   dom cdm 4644    o. ccom 4648   Fun wfun 5229   -->wf 5231   ` cfv 5235  (class class class)co 5896    oFcof 6104    ^pm cpm 6675   CCcc 7839   RRcr 7840    + caddc 7844    - cmin 8158   abscabs 11038   MetOpencmopn 13854    _D cdv 14584
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-nul 4144  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-iinf 4605  ax-cnex 7932  ax-resscn 7933  ax-1cn 7934  ax-1re 7935  ax-icn 7936  ax-addcl 7937  ax-addrcl 7938  ax-mulcl 7939  ax-mulrcl 7940  ax-addcom 7941  ax-mulcom 7942  ax-addass 7943  ax-mulass 7944  ax-distr 7945  ax-i2m1 7946  ax-0lt1 7947  ax-1rid 7948  ax-0id 7949  ax-rnegex 7950  ax-precex 7951  ax-cnre 7952  ax-pre-ltirr 7953  ax-pre-ltwlin 7954  ax-pre-lttrn 7955  ax-pre-apti 7956  ax-pre-ltadd 7957  ax-pre-mulgt0 7958  ax-pre-mulext 7959  ax-arch 7960  ax-caucvg 7961  ax-addf 7963
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-if 3550  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-tr 4117  df-id 4311  df-po 4314  df-iso 4315  df-iord 4384  df-on 4386  df-ilim 4387  df-suc 4389  df-iom 4608  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-f1 5240  df-fo 5241  df-f1o 5242  df-fv 5243  df-isom 5244  df-riota 5852  df-ov 5899  df-oprab 5900  df-mpo 5901  df-of 6106  df-1st 6165  df-2nd 6166  df-recs 6330  df-frec 6416  df-map 6676  df-pm 6677  df-sup 7013  df-inf 7014  df-pnf 8024  df-mnf 8025  df-xr 8026  df-ltxr 8027  df-le 8028  df-sub 8160  df-neg 8161  df-reap 8562  df-ap 8569  df-div 8660  df-inn 8950  df-2 9008  df-3 9009  df-4 9010  df-n0 9207  df-z 9284  df-uz 9559  df-q 9650  df-rp 9684  df-xneg 9802  df-xadd 9803  df-seqfrec 10477  df-exp 10551  df-cj 10883  df-re 10884  df-im 10885  df-rsqrt 11039  df-abs 11040  df-rest 12746  df-topgen 12765  df-psmet 13856  df-xmet 13857  df-met 13858  df-bl 13859  df-mopn 13860  df-top 13958  df-topon 13971  df-bases 14003  df-ntr 14056  df-cn 14148  df-cnp 14149  df-tx 14213  df-limced 14585  df-dvap 14586
This theorem is referenced by:  dviaddf  14629
  Copyright terms: Public domain W3C validator