ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvcjbr Unicode version

Theorem dvcjbr 15382
Description: The derivative of the conjugate of a function. For the (simpler but more limited) function version, see dvcj 15383. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Mario Carneiro, 10-Feb-2015.)
Hypotheses
Ref Expression
dvcj.f  |-  ( ph  ->  F : X --> CC )
dvcj.x  |-  ( ph  ->  X  C_  RR )
dvcj.c  |-  ( ph  ->  C  e.  dom  ( RR  _D  F ) )
Assertion
Ref Expression
dvcjbr  |-  ( ph  ->  C ( RR  _D  ( *  o.  F
) ) ( * `
 ( ( RR 
_D  F ) `  C ) ) )

Proof of Theorem dvcjbr
Dummy variables  x  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ax-resscn 8091 . . . . 5  |-  RR  C_  CC
21a1i 9 . . . 4  |-  ( ph  ->  RR  C_  CC )
3 dvcj.f . . . 4  |-  ( ph  ->  F : X --> CC )
4 dvcj.x . . . 4  |-  ( ph  ->  X  C_  RR )
5 eqid 2229 . . . . 5  |-  ( MetOpen `  ( abs  o.  -  )
)  =  ( MetOpen `  ( abs  o.  -  )
)
65tgioo2cntop 15231 . . . 4  |-  ( topGen ` 
ran  (,) )  =  ( ( MetOpen `  ( abs  o. 
-  ) )t  RR )
72, 3, 4, 6, 5dvbssntrcntop 15358 . . 3  |-  ( ph  ->  dom  ( RR  _D  F )  C_  (
( int `  ( topGen `
 ran  (,) )
) `  X )
)
8 dvcj.c . . 3  |-  ( ph  ->  C  e.  dom  ( RR  _D  F ) )
97, 8sseldd 3225 . 2  |-  ( ph  ->  C  e.  ( ( int `  ( topGen ` 
ran  (,) ) ) `  X ) )
104, 1sstrdi 3236 . . . . . 6  |-  ( ph  ->  X  C_  CC )
111a1i 9 . . . . . . . . 9  |-  ( ( F : X --> CC  /\  X  C_  RR )  ->  RR  C_  CC )
12 simpl 109 . . . . . . . . 9  |-  ( ( F : X --> CC  /\  X  C_  RR )  ->  F : X --> CC )
13 simpr 110 . . . . . . . . 9  |-  ( ( F : X --> CC  /\  X  C_  RR )  ->  X  C_  RR )
1411, 12, 13dvbss 15359 . . . . . . . 8  |-  ( ( F : X --> CC  /\  X  C_  RR )  ->  dom  ( RR  _D  F
)  C_  X )
153, 4, 14syl2anc 411 . . . . . . 7  |-  ( ph  ->  dom  ( RR  _D  F )  C_  X
)
1615, 8sseldd 3225 . . . . . 6  |-  ( ph  ->  C  e.  X )
173, 10, 16dvlemap 15354 . . . . 5  |-  ( (
ph  /\  x  e.  { w  e.  X  |  w #  C } )  -> 
( ( ( F `
 x )  -  ( F `  C ) )  /  ( x  -  C ) )  e.  CC )
1817fmpttd 5790 . . . 4  |-  ( ph  ->  ( x  e.  {
w  e.  X  |  w #  C }  |->  ( ( ( F `  x
)  -  ( F `
 C ) )  /  ( x  -  C ) ) ) : { w  e.  X  |  w #  C }
--> CC )
19 ssidd 3245 . . . 4  |-  ( ph  ->  CC  C_  CC )
205cntoptopon 15206 . . . . 5  |-  ( MetOpen `  ( abs  o.  -  )
)  e.  (TopOn `  CC )
2120toponrestid 14695 . . . 4  |-  ( MetOpen `  ( abs  o.  -  )
)  =  ( (
MetOpen `  ( abs  o.  -  ) )t  CC )
223fdmd 5480 . . . . . . . . . . . . 13  |-  ( ph  ->  dom  F  =  X )
2322feq2d 5461 . . . . . . . . . . . 12  |-  ( ph  ->  ( F : dom  F --> CC  <->  F : X --> CC ) )
243, 23mpbird 167 . . . . . . . . . . 11  |-  ( ph  ->  F : dom  F --> CC )
2522, 4eqsstrd 3260 . . . . . . . . . . 11  |-  ( ph  ->  dom  F  C_  RR )
26 cnex 8123 . . . . . . . . . . . 12  |-  CC  e.  _V
27 reex 8133 . . . . . . . . . . . 12  |-  RR  e.  _V
2826, 27elpm2 6827 . . . . . . . . . . 11  |-  ( F  e.  ( CC  ^pm  RR )  <->  ( F : dom  F --> CC  /\  dom  F 
C_  RR ) )
2924, 25, 28sylanbrc 417 . . . . . . . . . 10  |-  ( ph  ->  F  e.  ( CC 
^pm  RR ) )
30 dvfpm 15363 . . . . . . . . . 10  |-  ( F  e.  ( CC  ^pm  RR )  ->  ( RR  _D  F ) : dom  ( RR  _D  F
) --> CC )
3129, 30syl 14 . . . . . . . . 9  |-  ( ph  ->  ( RR  _D  F
) : dom  ( RR  _D  F ) --> CC )
3231ffund 5477 . . . . . . . 8  |-  ( ph  ->  Fun  ( RR  _D  F ) )
33 funfvbrb 5748 . . . . . . . 8  |-  ( Fun  ( RR  _D  F
)  ->  ( C  e.  dom  ( RR  _D  F )  <->  C ( RR  _D  F ) ( ( RR  _D  F
) `  C )
) )
3432, 33syl 14 . . . . . . 7  |-  ( ph  ->  ( C  e.  dom  ( RR  _D  F
)  <->  C ( RR  _D  F ) ( ( RR  _D  F ) `
 C ) ) )
358, 34mpbid 147 . . . . . 6  |-  ( ph  ->  C ( RR  _D  F ) ( ( RR  _D  F ) `
 C ) )
36 eqid 2229 . . . . . . 7  |-  ( x  e.  { w  e.  X  |  w #  C }  |->  ( ( ( F `  x )  -  ( F `  C ) )  / 
( x  -  C
) ) )  =  ( x  e.  {
w  e.  X  |  w #  C }  |->  ( ( ( F `  x
)  -  ( F `
 C ) )  /  ( x  -  C ) ) )
376, 5, 36, 2, 3, 4eldvap 15356 . . . . . 6  |-  ( ph  ->  ( C ( RR 
_D  F ) ( ( RR  _D  F
) `  C )  <->  ( C  e.  ( ( int `  ( topGen ` 
ran  (,) ) ) `  X )  /\  (
( RR  _D  F
) `  C )  e.  ( ( x  e. 
{ w  e.  X  |  w #  C }  |->  ( ( ( F `
 x )  -  ( F `  C ) )  /  ( x  -  C ) ) ) lim CC  C ) ) ) )
3835, 37mpbid 147 . . . . 5  |-  ( ph  ->  ( C  e.  ( ( int `  ( topGen `
 ran  (,) )
) `  X )  /\  ( ( RR  _D  F ) `  C
)  e.  ( ( x  e.  { w  e.  X  |  w #  C }  |->  ( ( ( F `  x
)  -  ( F `
 C ) )  /  ( x  -  C ) ) ) lim
CC  C ) ) )
3938simprd 114 . . . 4  |-  ( ph  ->  ( ( RR  _D  F ) `  C
)  e.  ( ( x  e.  { w  e.  X  |  w #  C }  |->  ( ( ( F `  x
)  -  ( F `
 C ) )  /  ( x  -  C ) ) ) lim
CC  C ) )
40 cjcncf 15262 . . . . . 6  |-  *  e.  ( CC -cn-> CC )
415cncfcn1cntop 15268 . . . . . 6  |-  ( CC
-cn-> CC )  =  ( ( MetOpen `  ( abs  o. 
-  ) )  Cn  ( MetOpen `  ( abs  o. 
-  ) ) )
4240, 41eleqtri 2304 . . . . 5  |-  *  e.  ( ( MetOpen `  ( abs  o.  -  ) )  Cn  ( MetOpen `  ( abs  o.  -  ) ) )
4331, 8ffvelcdmd 5771 . . . . 5  |-  ( ph  ->  ( ( RR  _D  F ) `  C
)  e.  CC )
44 unicntopcntop 15216 . . . . . 6  |-  CC  =  U. ( MetOpen `  ( abs  o. 
-  ) )
4544cncnpi 14902 . . . . 5  |-  ( ( *  e.  ( (
MetOpen `  ( abs  o.  -  ) )  Cn  ( MetOpen `  ( abs  o. 
-  ) ) )  /\  ( ( RR 
_D  F ) `  C )  e.  CC )  ->  *  e.  ( ( ( MetOpen `  ( abs  o.  -  ) )  CnP  ( MetOpen `  ( abs  o.  -  ) ) ) `  ( ( RR  _D  F ) `
 C ) ) )
4642, 43, 45sylancr 414 . . . 4  |-  ( ph  ->  *  e.  ( ( ( MetOpen `  ( abs  o. 
-  ) )  CnP  ( MetOpen `  ( abs  o. 
-  ) ) ) `
 ( ( RR 
_D  F ) `  C ) ) )
4718, 19, 5, 21, 39, 46limccnpcntop 15349 . . 3  |-  ( ph  ->  ( * `  (
( RR  _D  F
) `  C )
)  e.  ( ( *  o.  ( x  e.  { w  e.  X  |  w #  C }  |->  ( ( ( F `  x )  -  ( F `  C ) )  / 
( x  -  C
) ) ) ) lim
CC  C ) )
48 cjf 11358 . . . . . . 7  |-  * : CC --> CC
4948a1i 9 . . . . . 6  |-  ( ph  ->  * : CC --> CC )
5049, 17cofmpt 5804 . . . . 5  |-  ( ph  ->  ( *  o.  (
x  e.  { w  e.  X  |  w #  C }  |->  ( ( ( F `  x
)  -  ( F `
 C ) )  /  ( x  -  C ) ) ) )  =  ( x  e.  { w  e.  X  |  w #  C }  |->  ( * `  ( ( ( F `
 x )  -  ( F `  C ) )  /  ( x  -  C ) ) ) ) )
513adantr 276 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  { w  e.  X  |  w #  C } )  ->  F : X --> CC )
52 elrabi 2956 . . . . . . . . . . 11  |-  ( x  e.  { w  e.  X  |  w #  C }  ->  x  e.  X
)
5352adantl 277 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  { w  e.  X  |  w #  C } )  ->  x  e.  X )
5451, 53ffvelcdmd 5771 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  { w  e.  X  |  w #  C } )  -> 
( F `  x
)  e.  CC )
553, 16ffvelcdmd 5771 . . . . . . . . . 10  |-  ( ph  ->  ( F `  C
)  e.  CC )
5655adantr 276 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  { w  e.  X  |  w #  C } )  -> 
( F `  C
)  e.  CC )
5754, 56subcld 8457 . . . . . . . 8  |-  ( (
ph  /\  x  e.  { w  e.  X  |  w #  C } )  -> 
( ( F `  x )  -  ( F `  C )
)  e.  CC )
584sselda 3224 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  X )  ->  x  e.  RR )
5952, 58sylan2 286 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  { w  e.  X  |  w #  C } )  ->  x  e.  RR )
604, 16sseldd 3225 . . . . . . . . . . 11  |-  ( ph  ->  C  e.  RR )
6160adantr 276 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  { w  e.  X  |  w #  C } )  ->  C  e.  RR )
6259, 61resubcld 8527 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  { w  e.  X  |  w #  C } )  -> 
( x  -  C
)  e.  RR )
6362recnd 8175 . . . . . . . 8  |-  ( (
ph  /\  x  e.  { w  e.  X  |  w #  C } )  -> 
( x  -  C
)  e.  CC )
6459recnd 8175 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  { w  e.  X  |  w #  C } )  ->  x  e.  CC )
6561recnd 8175 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  { w  e.  X  |  w #  C } )  ->  C  e.  CC )
66 breq1 4086 . . . . . . . . . . . 12  |-  ( w  =  x  ->  (
w #  C  <->  x #  C
) )
6766elrab 2959 . . . . . . . . . . 11  |-  ( x  e.  { w  e.  X  |  w #  C } 
<->  ( x  e.  X  /\  x #  C )
)
6867simprbi 275 . . . . . . . . . 10  |-  ( x  e.  { w  e.  X  |  w #  C }  ->  x #  C )
6968adantl 277 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  { w  e.  X  |  w #  C } )  ->  x #  C )
7064, 65, 69subap0d 8791 . . . . . . . 8  |-  ( (
ph  /\  x  e.  { w  e.  X  |  w #  C } )  -> 
( x  -  C
) #  0 )
7157, 63, 70cjdivapd 11479 . . . . . . 7  |-  ( (
ph  /\  x  e.  { w  e.  X  |  w #  C } )  -> 
( * `  (
( ( F `  x )  -  ( F `  C )
)  /  ( x  -  C ) ) )  =  ( ( * `  ( ( F `  x )  -  ( F `  C ) ) )  /  ( * `  ( x  -  C
) ) ) )
72 cjsub 11403 . . . . . . . . . 10  |-  ( ( ( F `  x
)  e.  CC  /\  ( F `  C )  e.  CC )  -> 
( * `  (
( F `  x
)  -  ( F `
 C ) ) )  =  ( ( * `  ( F `
 x ) )  -  ( * `  ( F `  C ) ) ) )
7354, 56, 72syl2anc 411 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  { w  e.  X  |  w #  C } )  -> 
( * `  (
( F `  x
)  -  ( F `
 C ) ) )  =  ( ( * `  ( F `
 x ) )  -  ( * `  ( F `  C ) ) ) )
74 fvco3 5705 . . . . . . . . . . 11  |-  ( ( F : X --> CC  /\  x  e.  X )  ->  ( ( *  o.  F ) `  x
)  =  ( * `
 ( F `  x ) ) )
753, 52, 74syl2an 289 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  { w  e.  X  |  w #  C } )  -> 
( ( *  o.  F ) `  x
)  =  ( * `
 ( F `  x ) ) )
76 fvco3 5705 . . . . . . . . . . . 12  |-  ( ( F : X --> CC  /\  C  e.  X )  ->  ( ( *  o.  F ) `  C
)  =  ( * `
 ( F `  C ) ) )
773, 16, 76syl2anc 411 . . . . . . . . . . 11  |-  ( ph  ->  ( ( *  o.  F ) `  C
)  =  ( * `
 ( F `  C ) ) )
7877adantr 276 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  { w  e.  X  |  w #  C } )  -> 
( ( *  o.  F ) `  C
)  =  ( * `
 ( F `  C ) ) )
7975, 78oveq12d 6019 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  { w  e.  X  |  w #  C } )  -> 
( ( ( *  o.  F ) `  x )  -  (
( *  o.  F
) `  C )
)  =  ( ( * `  ( F `
 x ) )  -  ( * `  ( F `  C ) ) ) )
8073, 79eqtr4d 2265 . . . . . . . 8  |-  ( (
ph  /\  x  e.  { w  e.  X  |  w #  C } )  -> 
( * `  (
( F `  x
)  -  ( F `
 C ) ) )  =  ( ( ( *  o.  F
) `  x )  -  ( ( *  o.  F ) `  C ) ) )
8162cjred 11482 . . . . . . . 8  |-  ( (
ph  /\  x  e.  { w  e.  X  |  w #  C } )  -> 
( * `  (
x  -  C ) )  =  ( x  -  C ) )
8280, 81oveq12d 6019 . . . . . . 7  |-  ( (
ph  /\  x  e.  { w  e.  X  |  w #  C } )  -> 
( ( * `  ( ( F `  x )  -  ( F `  C )
) )  /  (
* `  ( x  -  C ) ) )  =  ( ( ( ( *  o.  F
) `  x )  -  ( ( *  o.  F ) `  C ) )  / 
( x  -  C
) ) )
8371, 82eqtrd 2262 . . . . . 6  |-  ( (
ph  /\  x  e.  { w  e.  X  |  w #  C } )  -> 
( * `  (
( ( F `  x )  -  ( F `  C )
)  /  ( x  -  C ) ) )  =  ( ( ( ( *  o.  F ) `  x
)  -  ( ( *  o.  F ) `
 C ) )  /  ( x  -  C ) ) )
8483mpteq2dva 4174 . . . . 5  |-  ( ph  ->  ( x  e.  {
w  e.  X  |  w #  C }  |->  ( * `
 ( ( ( F `  x )  -  ( F `  C ) )  / 
( x  -  C
) ) ) )  =  ( x  e. 
{ w  e.  X  |  w #  C }  |->  ( ( ( ( *  o.  F ) `
 x )  -  ( ( *  o.  F ) `  C
) )  /  (
x  -  C ) ) ) )
8550, 84eqtrd 2262 . . . 4  |-  ( ph  ->  ( *  o.  (
x  e.  { w  e.  X  |  w #  C }  |->  ( ( ( F `  x
)  -  ( F `
 C ) )  /  ( x  -  C ) ) ) )  =  ( x  e.  { w  e.  X  |  w #  C }  |->  ( ( ( ( *  o.  F
) `  x )  -  ( ( *  o.  F ) `  C ) )  / 
( x  -  C
) ) ) )
8685oveq1d 6016 . . 3  |-  ( ph  ->  ( ( *  o.  ( x  e.  {
w  e.  X  |  w #  C }  |->  ( ( ( F `  x
)  -  ( F `
 C ) )  /  ( x  -  C ) ) ) ) lim CC  C )  =  ( ( x  e.  { w  e.  X  |  w #  C }  |->  ( ( ( ( *  o.  F
) `  x )  -  ( ( *  o.  F ) `  C ) )  / 
( x  -  C
) ) ) lim CC  C ) )
8747, 86eleqtrd 2308 . 2  |-  ( ph  ->  ( * `  (
( RR  _D  F
) `  C )
)  e.  ( ( x  e.  { w  e.  X  |  w #  C }  |->  ( ( ( ( *  o.  F ) `  x
)  -  ( ( *  o.  F ) `
 C ) )  /  ( x  -  C ) ) ) lim
CC  C ) )
88 eqid 2229 . . 3  |-  ( x  e.  { w  e.  X  |  w #  C }  |->  ( ( ( ( *  o.  F
) `  x )  -  ( ( *  o.  F ) `  C ) )  / 
( x  -  C
) ) )  =  ( x  e.  {
w  e.  X  |  w #  C }  |->  ( ( ( ( *  o.  F ) `  x
)  -  ( ( *  o.  F ) `
 C ) )  /  ( x  -  C ) ) )
89 fco 5489 . . . 4  |-  ( ( * : CC --> CC  /\  F : X --> CC )  ->  ( *  o.  F ) : X --> CC )
9048, 3, 89sylancr 414 . . 3  |-  ( ph  ->  ( *  o.  F
) : X --> CC )
916, 5, 88, 2, 90, 4eldvap 15356 . 2  |-  ( ph  ->  ( C ( RR 
_D  ( *  o.  F ) ) ( * `  ( ( RR  _D  F ) `
 C ) )  <-> 
( C  e.  ( ( int `  ( topGen `
 ran  (,) )
) `  X )  /\  ( * `  (
( RR  _D  F
) `  C )
)  e.  ( ( x  e.  { w  e.  X  |  w #  C }  |->  ( ( ( ( *  o.  F ) `  x
)  -  ( ( *  o.  F ) `
 C ) )  /  ( x  -  C ) ) ) lim
CC  C ) ) ) )
929, 87, 91mpbir2and 950 1  |-  ( ph  ->  C ( RR  _D  ( *  o.  F
) ) ( * `
 ( ( RR 
_D  F ) `  C ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1395    e. wcel 2200   {crab 2512    C_ wss 3197   class class class wbr 4083    |-> cmpt 4145   dom cdm 4719   ran crn 4720    o. ccom 4723   Fun wfun 5312   -->wf 5314   ` cfv 5318  (class class class)co 6001    ^pm cpm 6796   CCcc 7997   RRcr 7998    - cmin 8317   # cap 8728    / cdiv 8819   (,)cioo 10084   *ccj 11350   abscabs 11508   topGenctg 13287   MetOpencmopn 14505   intcnt 14767    Cn ccn 14859    CnP ccnp 14860   -cn->ccncf 15244   lim CC climc 15328    _D cdv 15329
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-mulrcl 8098  ax-addcom 8099  ax-mulcom 8100  ax-addass 8101  ax-mulass 8102  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-1rid 8106  ax-0id 8107  ax-rnegex 8108  ax-precex 8109  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-apti 8114  ax-pre-ltadd 8115  ax-pre-mulgt0 8116  ax-pre-mulext 8117  ax-arch 8118  ax-caucvg 8119
This theorem depends on definitions:  df-bi 117  df-stab 836  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-po 4387  df-iso 4388  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-isom 5327  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-recs 6451  df-frec 6537  df-map 6797  df-pm 6798  df-sup 7151  df-inf 7152  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-reap 8722  df-ap 8729  df-div 8820  df-inn 9111  df-2 9169  df-3 9170  df-4 9171  df-n0 9370  df-z 9447  df-uz 9723  df-q 9815  df-rp 9850  df-xneg 9968  df-xadd 9969  df-ioo 10088  df-seqfrec 10670  df-exp 10761  df-cj 11353  df-re 11354  df-im 11355  df-rsqrt 11509  df-abs 11510  df-rest 13274  df-topgen 13293  df-psmet 14507  df-xmet 14508  df-met 14509  df-bl 14510  df-mopn 14511  df-top 14672  df-topon 14685  df-bases 14717  df-ntr 14770  df-cn 14862  df-cnp 14863  df-cncf 15245  df-limced 15330  df-dvap 15331
This theorem is referenced by:  dvcj  15383
  Copyright terms: Public domain W3C validator