Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dvcjbr | Unicode version |
Description: The derivative of the conjugate of a function. For the (simpler but more limited) function version, see dvcj 13467. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Mario Carneiro, 10-Feb-2015.) |
Ref | Expression |
---|---|
dvcj.f | |
dvcj.x | |
dvcj.c |
Ref | Expression |
---|---|
dvcjbr |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-resscn 7866 | . . . . 5 | |
2 | 1 | a1i 9 | . . . 4 |
3 | dvcj.f | . . . 4 | |
4 | dvcj.x | . . . 4 | |
5 | eqid 2170 | . . . . 5 | |
6 | 5 | tgioo2cntop 13343 | . . . 4 ↾t |
7 | 2, 3, 4, 6, 5 | dvbssntrcntop 13447 | . . 3 |
8 | dvcj.c | . . 3 | |
9 | 7, 8 | sseldd 3148 | . 2 |
10 | 4, 1 | sstrdi 3159 | . . . . . 6 |
11 | 1 | a1i 9 | . . . . . . . . 9 |
12 | simpl 108 | . . . . . . . . 9 | |
13 | simpr 109 | . . . . . . . . 9 | |
14 | 11, 12, 13 | dvbss 13448 | . . . . . . . 8 |
15 | 3, 4, 14 | syl2anc 409 | . . . . . . 7 |
16 | 15, 8 | sseldd 3148 | . . . . . 6 |
17 | 3, 10, 16 | dvlemap 13443 | . . . . 5 # |
18 | 17 | fmpttd 5651 | . . . 4 # # |
19 | ssidd 3168 | . . . 4 | |
20 | 5 | cntoptopon 13326 | . . . . 5 TopOn |
21 | 20 | toponrestid 12813 | . . . 4 ↾t |
22 | 3 | fdmd 5354 | . . . . . . . . . . . . 13 |
23 | 22 | feq2d 5335 | . . . . . . . . . . . 12 |
24 | 3, 23 | mpbird 166 | . . . . . . . . . . 11 |
25 | 22, 4 | eqsstrd 3183 | . . . . . . . . . . 11 |
26 | cnex 7898 | . . . . . . . . . . . 12 | |
27 | reex 7908 | . . . . . . . . . . . 12 | |
28 | 26, 27 | elpm2 6658 | . . . . . . . . . . 11 |
29 | 24, 25, 28 | sylanbrc 415 | . . . . . . . . . 10 |
30 | dvfpm 13452 | . . . . . . . . . 10 | |
31 | 29, 30 | syl 14 | . . . . . . . . 9 |
32 | 31 | ffund 5351 | . . . . . . . 8 |
33 | funfvbrb 5609 | . . . . . . . 8 | |
34 | 32, 33 | syl 14 | . . . . . . 7 |
35 | 8, 34 | mpbid 146 | . . . . . 6 |
36 | eqid 2170 | . . . . . . 7 # # | |
37 | 6, 5, 36, 2, 3, 4 | eldvap 13445 | . . . . . 6 # lim |
38 | 35, 37 | mpbid 146 | . . . . 5 # lim |
39 | 38 | simprd 113 | . . . 4 # lim |
40 | cjcncf 13369 | . . . . . 6 | |
41 | 5 | cncfcn1cntop 13375 | . . . . . 6 |
42 | 40, 41 | eleqtri 2245 | . . . . 5 |
43 | 31, 8 | ffvelrnd 5632 | . . . . 5 |
44 | unicntopcntop 13330 | . . . . . 6 | |
45 | 44 | cncnpi 13022 | . . . . 5 |
46 | 42, 43, 45 | sylancr 412 | . . . 4 |
47 | 18, 19, 5, 21, 39, 46 | limccnpcntop 13438 | . . 3 # lim |
48 | cjf 10811 | . . . . . . 7 | |
49 | 48 | a1i 9 | . . . . . 6 |
50 | 49, 17 | cofmpt 5665 | . . . . 5 # # |
51 | 3 | adantr 274 | . . . . . . . . . 10 # |
52 | elrabi 2883 | . . . . . . . . . . 11 # | |
53 | 52 | adantl 275 | . . . . . . . . . 10 # |
54 | 51, 53 | ffvelrnd 5632 | . . . . . . . . 9 # |
55 | 3, 16 | ffvelrnd 5632 | . . . . . . . . . 10 |
56 | 55 | adantr 274 | . . . . . . . . 9 # |
57 | 54, 56 | subcld 8230 | . . . . . . . 8 # |
58 | 4 | sselda 3147 | . . . . . . . . . . 11 |
59 | 52, 58 | sylan2 284 | . . . . . . . . . 10 # |
60 | 4, 16 | sseldd 3148 | . . . . . . . . . . 11 |
61 | 60 | adantr 274 | . . . . . . . . . 10 # |
62 | 59, 61 | resubcld 8300 | . . . . . . . . 9 # |
63 | 62 | recnd 7948 | . . . . . . . 8 # |
64 | 59 | recnd 7948 | . . . . . . . . 9 # |
65 | 61 | recnd 7948 | . . . . . . . . 9 # |
66 | breq1 3992 | . . . . . . . . . . . 12 # # | |
67 | 66 | elrab 2886 | . . . . . . . . . . 11 # # |
68 | 67 | simprbi 273 | . . . . . . . . . 10 # # |
69 | 68 | adantl 275 | . . . . . . . . 9 # # |
70 | 64, 65, 69 | subap0d 8563 | . . . . . . . 8 # # |
71 | 57, 63, 70 | cjdivapd 10932 | . . . . . . 7 # |
72 | cjsub 10856 | . . . . . . . . . 10 | |
73 | 54, 56, 72 | syl2anc 409 | . . . . . . . . 9 # |
74 | fvco3 5567 | . . . . . . . . . . 11 | |
75 | 3, 52, 74 | syl2an 287 | . . . . . . . . . 10 # |
76 | fvco3 5567 | . . . . . . . . . . . 12 | |
77 | 3, 16, 76 | syl2anc 409 | . . . . . . . . . . 11 |
78 | 77 | adantr 274 | . . . . . . . . . 10 # |
79 | 75, 78 | oveq12d 5871 | . . . . . . . . 9 # |
80 | 73, 79 | eqtr4d 2206 | . . . . . . . 8 # |
81 | 62 | cjred 10935 | . . . . . . . 8 # |
82 | 80, 81 | oveq12d 5871 | . . . . . . 7 # |
83 | 71, 82 | eqtrd 2203 | . . . . . 6 # |
84 | 83 | mpteq2dva 4079 | . . . . 5 # # |
85 | 50, 84 | eqtrd 2203 | . . . 4 # # |
86 | 85 | oveq1d 5868 | . . 3 # lim # lim |
87 | 47, 86 | eleqtrd 2249 | . 2 # lim |
88 | eqid 2170 | . . 3 # # | |
89 | fco 5363 | . . . 4 | |
90 | 48, 3, 89 | sylancr 412 | . . 3 |
91 | 6, 5, 88, 2, 90, 4 | eldvap 13445 | . 2 # lim |
92 | 9, 87, 91 | mpbir2and 939 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1348 wcel 2141 crab 2452 wss 3121 class class class wbr 3989 cmpt 4050 cdm 4611 crn 4612 ccom 4615 wfun 5192 wf 5194 cfv 5198 (class class class)co 5853 cpm 6627 cc 7772 cr 7773 cmin 8090 # cap 8500 cdiv 8589 cioo 9845 ccj 10803 cabs 10961 ctg 12594 cmopn 12779 cnt 12887 ccn 12979 ccnp 12980 ccncf 13351 lim climc 13417 cdv 13418 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-iinf 4572 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-mulrcl 7873 ax-addcom 7874 ax-mulcom 7875 ax-addass 7876 ax-mulass 7877 ax-distr 7878 ax-i2m1 7879 ax-0lt1 7880 ax-1rid 7881 ax-0id 7882 ax-rnegex 7883 ax-precex 7884 ax-cnre 7885 ax-pre-ltirr 7886 ax-pre-ltwlin 7887 ax-pre-lttrn 7888 ax-pre-apti 7889 ax-pre-ltadd 7890 ax-pre-mulgt0 7891 ax-pre-mulext 7892 ax-arch 7893 ax-caucvg 7894 |
This theorem depends on definitions: df-bi 116 df-stab 826 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rmo 2456 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-if 3527 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-tr 4088 df-id 4278 df-po 4281 df-iso 4282 df-iord 4351 df-on 4353 df-ilim 4354 df-suc 4356 df-iom 4575 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-isom 5207 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-1st 6119 df-2nd 6120 df-recs 6284 df-frec 6370 df-map 6628 df-pm 6629 df-sup 6961 df-inf 6962 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 df-le 7960 df-sub 8092 df-neg 8093 df-reap 8494 df-ap 8501 df-div 8590 df-inn 8879 df-2 8937 df-3 8938 df-4 8939 df-n0 9136 df-z 9213 df-uz 9488 df-q 9579 df-rp 9611 df-xneg 9729 df-xadd 9730 df-ioo 9849 df-seqfrec 10402 df-exp 10476 df-cj 10806 df-re 10807 df-im 10808 df-rsqrt 10962 df-abs 10963 df-rest 12581 df-topgen 12600 df-psmet 12781 df-xmet 12782 df-met 12783 df-bl 12784 df-mopn 12785 df-top 12790 df-topon 12803 df-bases 12835 df-ntr 12890 df-cn 12982 df-cnp 12983 df-cncf 13352 df-limced 13419 df-dvap 13420 |
This theorem is referenced by: dvcj 13467 |
Copyright terms: Public domain | W3C validator |