| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dvcjbr | Unicode version | ||
| Description: The derivative of the conjugate of a function. For the (simpler but more limited) function version, see dvcj 15214. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Mario Carneiro, 10-Feb-2015.) |
| Ref | Expression |
|---|---|
| dvcj.f |
|
| dvcj.x |
|
| dvcj.c |
|
| Ref | Expression |
|---|---|
| dvcjbr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-resscn 8019 |
. . . . 5
| |
| 2 | 1 | a1i 9 |
. . . 4
|
| 3 | dvcj.f |
. . . 4
| |
| 4 | dvcj.x |
. . . 4
| |
| 5 | eqid 2205 |
. . . . 5
| |
| 6 | 5 | tgioo2cntop 15062 |
. . . 4
|
| 7 | 2, 3, 4, 6, 5 | dvbssntrcntop 15189 |
. . 3
|
| 8 | dvcj.c |
. . 3
| |
| 9 | 7, 8 | sseldd 3194 |
. 2
|
| 10 | 4, 1 | sstrdi 3205 |
. . . . . 6
|
| 11 | 1 | a1i 9 |
. . . . . . . . 9
|
| 12 | simpl 109 |
. . . . . . . . 9
| |
| 13 | simpr 110 |
. . . . . . . . 9
| |
| 14 | 11, 12, 13 | dvbss 15190 |
. . . . . . . 8
|
| 15 | 3, 4, 14 | syl2anc 411 |
. . . . . . 7
|
| 16 | 15, 8 | sseldd 3194 |
. . . . . 6
|
| 17 | 3, 10, 16 | dvlemap 15185 |
. . . . 5
|
| 18 | 17 | fmpttd 5737 |
. . . 4
|
| 19 | ssidd 3214 |
. . . 4
| |
| 20 | 5 | cntoptopon 15037 |
. . . . 5
|
| 21 | 20 | toponrestid 14526 |
. . . 4
|
| 22 | 3 | fdmd 5434 |
. . . . . . . . . . . . 13
|
| 23 | 22 | feq2d 5415 |
. . . . . . . . . . . 12
|
| 24 | 3, 23 | mpbird 167 |
. . . . . . . . . . 11
|
| 25 | 22, 4 | eqsstrd 3229 |
. . . . . . . . . . 11
|
| 26 | cnex 8051 |
. . . . . . . . . . . 12
| |
| 27 | reex 8061 |
. . . . . . . . . . . 12
| |
| 28 | 26, 27 | elpm2 6769 |
. . . . . . . . . . 11
|
| 29 | 24, 25, 28 | sylanbrc 417 |
. . . . . . . . . 10
|
| 30 | dvfpm 15194 |
. . . . . . . . . 10
| |
| 31 | 29, 30 | syl 14 |
. . . . . . . . 9
|
| 32 | 31 | ffund 5431 |
. . . . . . . 8
|
| 33 | funfvbrb 5695 |
. . . . . . . 8
| |
| 34 | 32, 33 | syl 14 |
. . . . . . 7
|
| 35 | 8, 34 | mpbid 147 |
. . . . . 6
|
| 36 | eqid 2205 |
. . . . . . 7
| |
| 37 | 6, 5, 36, 2, 3, 4 | eldvap 15187 |
. . . . . 6
|
| 38 | 35, 37 | mpbid 147 |
. . . . 5
|
| 39 | 38 | simprd 114 |
. . . 4
|
| 40 | cjcncf 15093 |
. . . . . 6
| |
| 41 | 5 | cncfcn1cntop 15099 |
. . . . . 6
|
| 42 | 40, 41 | eleqtri 2280 |
. . . . 5
|
| 43 | 31, 8 | ffvelcdmd 5718 |
. . . . 5
|
| 44 | unicntopcntop 15047 |
. . . . . 6
| |
| 45 | 44 | cncnpi 14733 |
. . . . 5
|
| 46 | 42, 43, 45 | sylancr 414 |
. . . 4
|
| 47 | 18, 19, 5, 21, 39, 46 | limccnpcntop 15180 |
. . 3
|
| 48 | cjf 11191 |
. . . . . . 7
| |
| 49 | 48 | a1i 9 |
. . . . . 6
|
| 50 | 49, 17 | cofmpt 5751 |
. . . . 5
|
| 51 | 3 | adantr 276 |
. . . . . . . . . 10
|
| 52 | elrabi 2926 |
. . . . . . . . . . 11
| |
| 53 | 52 | adantl 277 |
. . . . . . . . . 10
|
| 54 | 51, 53 | ffvelcdmd 5718 |
. . . . . . . . 9
|
| 55 | 3, 16 | ffvelcdmd 5718 |
. . . . . . . . . 10
|
| 56 | 55 | adantr 276 |
. . . . . . . . 9
|
| 57 | 54, 56 | subcld 8385 |
. . . . . . . 8
|
| 58 | 4 | sselda 3193 |
. . . . . . . . . . 11
|
| 59 | 52, 58 | sylan2 286 |
. . . . . . . . . 10
|
| 60 | 4, 16 | sseldd 3194 |
. . . . . . . . . . 11
|
| 61 | 60 | adantr 276 |
. . . . . . . . . 10
|
| 62 | 59, 61 | resubcld 8455 |
. . . . . . . . 9
|
| 63 | 62 | recnd 8103 |
. . . . . . . 8
|
| 64 | 59 | recnd 8103 |
. . . . . . . . 9
|
| 65 | 61 | recnd 8103 |
. . . . . . . . 9
|
| 66 | breq1 4048 |
. . . . . . . . . . . 12
| |
| 67 | 66 | elrab 2929 |
. . . . . . . . . . 11
|
| 68 | 67 | simprbi 275 |
. . . . . . . . . 10
|
| 69 | 68 | adantl 277 |
. . . . . . . . 9
|
| 70 | 64, 65, 69 | subap0d 8719 |
. . . . . . . 8
|
| 71 | 57, 63, 70 | cjdivapd 11312 |
. . . . . . 7
|
| 72 | cjsub 11236 |
. . . . . . . . . 10
| |
| 73 | 54, 56, 72 | syl2anc 411 |
. . . . . . . . 9
|
| 74 | fvco3 5652 |
. . . . . . . . . . 11
| |
| 75 | 3, 52, 74 | syl2an 289 |
. . . . . . . . . 10
|
| 76 | fvco3 5652 |
. . . . . . . . . . . 12
| |
| 77 | 3, 16, 76 | syl2anc 411 |
. . . . . . . . . . 11
|
| 78 | 77 | adantr 276 |
. . . . . . . . . 10
|
| 79 | 75, 78 | oveq12d 5964 |
. . . . . . . . 9
|
| 80 | 73, 79 | eqtr4d 2241 |
. . . . . . . 8
|
| 81 | 62 | cjred 11315 |
. . . . . . . 8
|
| 82 | 80, 81 | oveq12d 5964 |
. . . . . . 7
|
| 83 | 71, 82 | eqtrd 2238 |
. . . . . 6
|
| 84 | 83 | mpteq2dva 4135 |
. . . . 5
|
| 85 | 50, 84 | eqtrd 2238 |
. . . 4
|
| 86 | 85 | oveq1d 5961 |
. . 3
|
| 87 | 47, 86 | eleqtrd 2284 |
. 2
|
| 88 | eqid 2205 |
. . 3
| |
| 89 | fco 5443 |
. . . 4
| |
| 90 | 48, 3, 89 | sylancr 414 |
. . 3
|
| 91 | 6, 5, 88, 2, 90, 4 | eldvap 15187 |
. 2
|
| 92 | 9, 87, 91 | mpbir2and 947 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-coll 4160 ax-sep 4163 ax-nul 4171 ax-pow 4219 ax-pr 4254 ax-un 4481 ax-setind 4586 ax-iinf 4637 ax-cnex 8018 ax-resscn 8019 ax-1cn 8020 ax-1re 8021 ax-icn 8022 ax-addcl 8023 ax-addrcl 8024 ax-mulcl 8025 ax-mulrcl 8026 ax-addcom 8027 ax-mulcom 8028 ax-addass 8029 ax-mulass 8030 ax-distr 8031 ax-i2m1 8032 ax-0lt1 8033 ax-1rid 8034 ax-0id 8035 ax-rnegex 8036 ax-precex 8037 ax-cnre 8038 ax-pre-ltirr 8039 ax-pre-ltwlin 8040 ax-pre-lttrn 8041 ax-pre-apti 8042 ax-pre-ltadd 8043 ax-pre-mulgt0 8044 ax-pre-mulext 8045 ax-arch 8046 ax-caucvg 8047 |
| This theorem depends on definitions: df-bi 117 df-stab 833 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-reu 2491 df-rmo 2492 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-if 3572 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-iun 3929 df-br 4046 df-opab 4107 df-mpt 4108 df-tr 4144 df-id 4341 df-po 4344 df-iso 4345 df-iord 4414 df-on 4416 df-ilim 4417 df-suc 4419 df-iom 4640 df-xp 4682 df-rel 4683 df-cnv 4684 df-co 4685 df-dm 4686 df-rn 4687 df-res 4688 df-ima 4689 df-iota 5233 df-fun 5274 df-fn 5275 df-f 5276 df-f1 5277 df-fo 5278 df-f1o 5279 df-fv 5280 df-isom 5281 df-riota 5901 df-ov 5949 df-oprab 5950 df-mpo 5951 df-1st 6228 df-2nd 6229 df-recs 6393 df-frec 6479 df-map 6739 df-pm 6740 df-sup 7088 df-inf 7089 df-pnf 8111 df-mnf 8112 df-xr 8113 df-ltxr 8114 df-le 8115 df-sub 8247 df-neg 8248 df-reap 8650 df-ap 8657 df-div 8748 df-inn 9039 df-2 9097 df-3 9098 df-4 9099 df-n0 9298 df-z 9375 df-uz 9651 df-q 9743 df-rp 9778 df-xneg 9896 df-xadd 9897 df-ioo 10016 df-seqfrec 10595 df-exp 10686 df-cj 11186 df-re 11187 df-im 11188 df-rsqrt 11342 df-abs 11343 df-rest 13106 df-topgen 13125 df-psmet 14338 df-xmet 14339 df-met 14340 df-bl 14341 df-mopn 14342 df-top 14503 df-topon 14516 df-bases 14548 df-ntr 14601 df-cn 14693 df-cnp 14694 df-cncf 15076 df-limced 15161 df-dvap 15162 |
| This theorem is referenced by: dvcj 15214 |
| Copyright terms: Public domain | W3C validator |