ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvcjbr Unicode version

Theorem dvcjbr 15295
Description: The derivative of the conjugate of a function. For the (simpler but more limited) function version, see dvcj 15296. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Mario Carneiro, 10-Feb-2015.)
Hypotheses
Ref Expression
dvcj.f  |-  ( ph  ->  F : X --> CC )
dvcj.x  |-  ( ph  ->  X  C_  RR )
dvcj.c  |-  ( ph  ->  C  e.  dom  ( RR  _D  F ) )
Assertion
Ref Expression
dvcjbr  |-  ( ph  ->  C ( RR  _D  ( *  o.  F
) ) ( * `
 ( ( RR 
_D  F ) `  C ) ) )

Proof of Theorem dvcjbr
Dummy variables  x  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ax-resscn 8052 . . . . 5  |-  RR  C_  CC
21a1i 9 . . . 4  |-  ( ph  ->  RR  C_  CC )
3 dvcj.f . . . 4  |-  ( ph  ->  F : X --> CC )
4 dvcj.x . . . 4  |-  ( ph  ->  X  C_  RR )
5 eqid 2207 . . . . 5  |-  ( MetOpen `  ( abs  o.  -  )
)  =  ( MetOpen `  ( abs  o.  -  )
)
65tgioo2cntop 15144 . . . 4  |-  ( topGen ` 
ran  (,) )  =  ( ( MetOpen `  ( abs  o. 
-  ) )t  RR )
72, 3, 4, 6, 5dvbssntrcntop 15271 . . 3  |-  ( ph  ->  dom  ( RR  _D  F )  C_  (
( int `  ( topGen `
 ran  (,) )
) `  X )
)
8 dvcj.c . . 3  |-  ( ph  ->  C  e.  dom  ( RR  _D  F ) )
97, 8sseldd 3202 . 2  |-  ( ph  ->  C  e.  ( ( int `  ( topGen ` 
ran  (,) ) ) `  X ) )
104, 1sstrdi 3213 . . . . . 6  |-  ( ph  ->  X  C_  CC )
111a1i 9 . . . . . . . . 9  |-  ( ( F : X --> CC  /\  X  C_  RR )  ->  RR  C_  CC )
12 simpl 109 . . . . . . . . 9  |-  ( ( F : X --> CC  /\  X  C_  RR )  ->  F : X --> CC )
13 simpr 110 . . . . . . . . 9  |-  ( ( F : X --> CC  /\  X  C_  RR )  ->  X  C_  RR )
1411, 12, 13dvbss 15272 . . . . . . . 8  |-  ( ( F : X --> CC  /\  X  C_  RR )  ->  dom  ( RR  _D  F
)  C_  X )
153, 4, 14syl2anc 411 . . . . . . 7  |-  ( ph  ->  dom  ( RR  _D  F )  C_  X
)
1615, 8sseldd 3202 . . . . . 6  |-  ( ph  ->  C  e.  X )
173, 10, 16dvlemap 15267 . . . . 5  |-  ( (
ph  /\  x  e.  { w  e.  X  |  w #  C } )  -> 
( ( ( F `
 x )  -  ( F `  C ) )  /  ( x  -  C ) )  e.  CC )
1817fmpttd 5758 . . . 4  |-  ( ph  ->  ( x  e.  {
w  e.  X  |  w #  C }  |->  ( ( ( F `  x
)  -  ( F `
 C ) )  /  ( x  -  C ) ) ) : { w  e.  X  |  w #  C }
--> CC )
19 ssidd 3222 . . . 4  |-  ( ph  ->  CC  C_  CC )
205cntoptopon 15119 . . . . 5  |-  ( MetOpen `  ( abs  o.  -  )
)  e.  (TopOn `  CC )
2120toponrestid 14608 . . . 4  |-  ( MetOpen `  ( abs  o.  -  )
)  =  ( (
MetOpen `  ( abs  o.  -  ) )t  CC )
223fdmd 5452 . . . . . . . . . . . . 13  |-  ( ph  ->  dom  F  =  X )
2322feq2d 5433 . . . . . . . . . . . 12  |-  ( ph  ->  ( F : dom  F --> CC  <->  F : X --> CC ) )
243, 23mpbird 167 . . . . . . . . . . 11  |-  ( ph  ->  F : dom  F --> CC )
2522, 4eqsstrd 3237 . . . . . . . . . . 11  |-  ( ph  ->  dom  F  C_  RR )
26 cnex 8084 . . . . . . . . . . . 12  |-  CC  e.  _V
27 reex 8094 . . . . . . . . . . . 12  |-  RR  e.  _V
2826, 27elpm2 6790 . . . . . . . . . . 11  |-  ( F  e.  ( CC  ^pm  RR )  <->  ( F : dom  F --> CC  /\  dom  F 
C_  RR ) )
2924, 25, 28sylanbrc 417 . . . . . . . . . 10  |-  ( ph  ->  F  e.  ( CC 
^pm  RR ) )
30 dvfpm 15276 . . . . . . . . . 10  |-  ( F  e.  ( CC  ^pm  RR )  ->  ( RR  _D  F ) : dom  ( RR  _D  F
) --> CC )
3129, 30syl 14 . . . . . . . . 9  |-  ( ph  ->  ( RR  _D  F
) : dom  ( RR  _D  F ) --> CC )
3231ffund 5449 . . . . . . . 8  |-  ( ph  ->  Fun  ( RR  _D  F ) )
33 funfvbrb 5716 . . . . . . . 8  |-  ( Fun  ( RR  _D  F
)  ->  ( C  e.  dom  ( RR  _D  F )  <->  C ( RR  _D  F ) ( ( RR  _D  F
) `  C )
) )
3432, 33syl 14 . . . . . . 7  |-  ( ph  ->  ( C  e.  dom  ( RR  _D  F
)  <->  C ( RR  _D  F ) ( ( RR  _D  F ) `
 C ) ) )
358, 34mpbid 147 . . . . . 6  |-  ( ph  ->  C ( RR  _D  F ) ( ( RR  _D  F ) `
 C ) )
36 eqid 2207 . . . . . . 7  |-  ( x  e.  { w  e.  X  |  w #  C }  |->  ( ( ( F `  x )  -  ( F `  C ) )  / 
( x  -  C
) ) )  =  ( x  e.  {
w  e.  X  |  w #  C }  |->  ( ( ( F `  x
)  -  ( F `
 C ) )  /  ( x  -  C ) ) )
376, 5, 36, 2, 3, 4eldvap 15269 . . . . . 6  |-  ( ph  ->  ( C ( RR 
_D  F ) ( ( RR  _D  F
) `  C )  <->  ( C  e.  ( ( int `  ( topGen ` 
ran  (,) ) ) `  X )  /\  (
( RR  _D  F
) `  C )  e.  ( ( x  e. 
{ w  e.  X  |  w #  C }  |->  ( ( ( F `
 x )  -  ( F `  C ) )  /  ( x  -  C ) ) ) lim CC  C ) ) ) )
3835, 37mpbid 147 . . . . 5  |-  ( ph  ->  ( C  e.  ( ( int `  ( topGen `
 ran  (,) )
) `  X )  /\  ( ( RR  _D  F ) `  C
)  e.  ( ( x  e.  { w  e.  X  |  w #  C }  |->  ( ( ( F `  x
)  -  ( F `
 C ) )  /  ( x  -  C ) ) ) lim
CC  C ) ) )
3938simprd 114 . . . 4  |-  ( ph  ->  ( ( RR  _D  F ) `  C
)  e.  ( ( x  e.  { w  e.  X  |  w #  C }  |->  ( ( ( F `  x
)  -  ( F `
 C ) )  /  ( x  -  C ) ) ) lim
CC  C ) )
40 cjcncf 15175 . . . . . 6  |-  *  e.  ( CC -cn-> CC )
415cncfcn1cntop 15181 . . . . . 6  |-  ( CC
-cn-> CC )  =  ( ( MetOpen `  ( abs  o. 
-  ) )  Cn  ( MetOpen `  ( abs  o. 
-  ) ) )
4240, 41eleqtri 2282 . . . . 5  |-  *  e.  ( ( MetOpen `  ( abs  o.  -  ) )  Cn  ( MetOpen `  ( abs  o.  -  ) ) )
4331, 8ffvelcdmd 5739 . . . . 5  |-  ( ph  ->  ( ( RR  _D  F ) `  C
)  e.  CC )
44 unicntopcntop 15129 . . . . . 6  |-  CC  =  U. ( MetOpen `  ( abs  o. 
-  ) )
4544cncnpi 14815 . . . . 5  |-  ( ( *  e.  ( (
MetOpen `  ( abs  o.  -  ) )  Cn  ( MetOpen `  ( abs  o. 
-  ) ) )  /\  ( ( RR 
_D  F ) `  C )  e.  CC )  ->  *  e.  ( ( ( MetOpen `  ( abs  o.  -  ) )  CnP  ( MetOpen `  ( abs  o.  -  ) ) ) `  ( ( RR  _D  F ) `
 C ) ) )
4642, 43, 45sylancr 414 . . . 4  |-  ( ph  ->  *  e.  ( ( ( MetOpen `  ( abs  o. 
-  ) )  CnP  ( MetOpen `  ( abs  o. 
-  ) ) ) `
 ( ( RR 
_D  F ) `  C ) ) )
4718, 19, 5, 21, 39, 46limccnpcntop 15262 . . 3  |-  ( ph  ->  ( * `  (
( RR  _D  F
) `  C )
)  e.  ( ( *  o.  ( x  e.  { w  e.  X  |  w #  C }  |->  ( ( ( F `  x )  -  ( F `  C ) )  / 
( x  -  C
) ) ) ) lim
CC  C ) )
48 cjf 11273 . . . . . . 7  |-  * : CC --> CC
4948a1i 9 . . . . . 6  |-  ( ph  ->  * : CC --> CC )
5049, 17cofmpt 5772 . . . . 5  |-  ( ph  ->  ( *  o.  (
x  e.  { w  e.  X  |  w #  C }  |->  ( ( ( F `  x
)  -  ( F `
 C ) )  /  ( x  -  C ) ) ) )  =  ( x  e.  { w  e.  X  |  w #  C }  |->  ( * `  ( ( ( F `
 x )  -  ( F `  C ) )  /  ( x  -  C ) ) ) ) )
513adantr 276 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  { w  e.  X  |  w #  C } )  ->  F : X --> CC )
52 elrabi 2933 . . . . . . . . . . 11  |-  ( x  e.  { w  e.  X  |  w #  C }  ->  x  e.  X
)
5352adantl 277 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  { w  e.  X  |  w #  C } )  ->  x  e.  X )
5451, 53ffvelcdmd 5739 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  { w  e.  X  |  w #  C } )  -> 
( F `  x
)  e.  CC )
553, 16ffvelcdmd 5739 . . . . . . . . . 10  |-  ( ph  ->  ( F `  C
)  e.  CC )
5655adantr 276 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  { w  e.  X  |  w #  C } )  -> 
( F `  C
)  e.  CC )
5754, 56subcld 8418 . . . . . . . 8  |-  ( (
ph  /\  x  e.  { w  e.  X  |  w #  C } )  -> 
( ( F `  x )  -  ( F `  C )
)  e.  CC )
584sselda 3201 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  X )  ->  x  e.  RR )
5952, 58sylan2 286 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  { w  e.  X  |  w #  C } )  ->  x  e.  RR )
604, 16sseldd 3202 . . . . . . . . . . 11  |-  ( ph  ->  C  e.  RR )
6160adantr 276 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  { w  e.  X  |  w #  C } )  ->  C  e.  RR )
6259, 61resubcld 8488 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  { w  e.  X  |  w #  C } )  -> 
( x  -  C
)  e.  RR )
6362recnd 8136 . . . . . . . 8  |-  ( (
ph  /\  x  e.  { w  e.  X  |  w #  C } )  -> 
( x  -  C
)  e.  CC )
6459recnd 8136 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  { w  e.  X  |  w #  C } )  ->  x  e.  CC )
6561recnd 8136 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  { w  e.  X  |  w #  C } )  ->  C  e.  CC )
66 breq1 4062 . . . . . . . . . . . 12  |-  ( w  =  x  ->  (
w #  C  <->  x #  C
) )
6766elrab 2936 . . . . . . . . . . 11  |-  ( x  e.  { w  e.  X  |  w #  C } 
<->  ( x  e.  X  /\  x #  C )
)
6867simprbi 275 . . . . . . . . . 10  |-  ( x  e.  { w  e.  X  |  w #  C }  ->  x #  C )
6968adantl 277 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  { w  e.  X  |  w #  C } )  ->  x #  C )
7064, 65, 69subap0d 8752 . . . . . . . 8  |-  ( (
ph  /\  x  e.  { w  e.  X  |  w #  C } )  -> 
( x  -  C
) #  0 )
7157, 63, 70cjdivapd 11394 . . . . . . 7  |-  ( (
ph  /\  x  e.  { w  e.  X  |  w #  C } )  -> 
( * `  (
( ( F `  x )  -  ( F `  C )
)  /  ( x  -  C ) ) )  =  ( ( * `  ( ( F `  x )  -  ( F `  C ) ) )  /  ( * `  ( x  -  C
) ) ) )
72 cjsub 11318 . . . . . . . . . 10  |-  ( ( ( F `  x
)  e.  CC  /\  ( F `  C )  e.  CC )  -> 
( * `  (
( F `  x
)  -  ( F `
 C ) ) )  =  ( ( * `  ( F `
 x ) )  -  ( * `  ( F `  C ) ) ) )
7354, 56, 72syl2anc 411 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  { w  e.  X  |  w #  C } )  -> 
( * `  (
( F `  x
)  -  ( F `
 C ) ) )  =  ( ( * `  ( F `
 x ) )  -  ( * `  ( F `  C ) ) ) )
74 fvco3 5673 . . . . . . . . . . 11  |-  ( ( F : X --> CC  /\  x  e.  X )  ->  ( ( *  o.  F ) `  x
)  =  ( * `
 ( F `  x ) ) )
753, 52, 74syl2an 289 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  { w  e.  X  |  w #  C } )  -> 
( ( *  o.  F ) `  x
)  =  ( * `
 ( F `  x ) ) )
76 fvco3 5673 . . . . . . . . . . . 12  |-  ( ( F : X --> CC  /\  C  e.  X )  ->  ( ( *  o.  F ) `  C
)  =  ( * `
 ( F `  C ) ) )
773, 16, 76syl2anc 411 . . . . . . . . . . 11  |-  ( ph  ->  ( ( *  o.  F ) `  C
)  =  ( * `
 ( F `  C ) ) )
7877adantr 276 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  { w  e.  X  |  w #  C } )  -> 
( ( *  o.  F ) `  C
)  =  ( * `
 ( F `  C ) ) )
7975, 78oveq12d 5985 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  { w  e.  X  |  w #  C } )  -> 
( ( ( *  o.  F ) `  x )  -  (
( *  o.  F
) `  C )
)  =  ( ( * `  ( F `
 x ) )  -  ( * `  ( F `  C ) ) ) )
8073, 79eqtr4d 2243 . . . . . . . 8  |-  ( (
ph  /\  x  e.  { w  e.  X  |  w #  C } )  -> 
( * `  (
( F `  x
)  -  ( F `
 C ) ) )  =  ( ( ( *  o.  F
) `  x )  -  ( ( *  o.  F ) `  C ) ) )
8162cjred 11397 . . . . . . . 8  |-  ( (
ph  /\  x  e.  { w  e.  X  |  w #  C } )  -> 
( * `  (
x  -  C ) )  =  ( x  -  C ) )
8280, 81oveq12d 5985 . . . . . . 7  |-  ( (
ph  /\  x  e.  { w  e.  X  |  w #  C } )  -> 
( ( * `  ( ( F `  x )  -  ( F `  C )
) )  /  (
* `  ( x  -  C ) ) )  =  ( ( ( ( *  o.  F
) `  x )  -  ( ( *  o.  F ) `  C ) )  / 
( x  -  C
) ) )
8371, 82eqtrd 2240 . . . . . 6  |-  ( (
ph  /\  x  e.  { w  e.  X  |  w #  C } )  -> 
( * `  (
( ( F `  x )  -  ( F `  C )
)  /  ( x  -  C ) ) )  =  ( ( ( ( *  o.  F ) `  x
)  -  ( ( *  o.  F ) `
 C ) )  /  ( x  -  C ) ) )
8483mpteq2dva 4150 . . . . 5  |-  ( ph  ->  ( x  e.  {
w  e.  X  |  w #  C }  |->  ( * `
 ( ( ( F `  x )  -  ( F `  C ) )  / 
( x  -  C
) ) ) )  =  ( x  e. 
{ w  e.  X  |  w #  C }  |->  ( ( ( ( *  o.  F ) `
 x )  -  ( ( *  o.  F ) `  C
) )  /  (
x  -  C ) ) ) )
8550, 84eqtrd 2240 . . . 4  |-  ( ph  ->  ( *  o.  (
x  e.  { w  e.  X  |  w #  C }  |->  ( ( ( F `  x
)  -  ( F `
 C ) )  /  ( x  -  C ) ) ) )  =  ( x  e.  { w  e.  X  |  w #  C }  |->  ( ( ( ( *  o.  F
) `  x )  -  ( ( *  o.  F ) `  C ) )  / 
( x  -  C
) ) ) )
8685oveq1d 5982 . . 3  |-  ( ph  ->  ( ( *  o.  ( x  e.  {
w  e.  X  |  w #  C }  |->  ( ( ( F `  x
)  -  ( F `
 C ) )  /  ( x  -  C ) ) ) ) lim CC  C )  =  ( ( x  e.  { w  e.  X  |  w #  C }  |->  ( ( ( ( *  o.  F
) `  x )  -  ( ( *  o.  F ) `  C ) )  / 
( x  -  C
) ) ) lim CC  C ) )
8747, 86eleqtrd 2286 . 2  |-  ( ph  ->  ( * `  (
( RR  _D  F
) `  C )
)  e.  ( ( x  e.  { w  e.  X  |  w #  C }  |->  ( ( ( ( *  o.  F ) `  x
)  -  ( ( *  o.  F ) `
 C ) )  /  ( x  -  C ) ) ) lim
CC  C ) )
88 eqid 2207 . . 3  |-  ( x  e.  { w  e.  X  |  w #  C }  |->  ( ( ( ( *  o.  F
) `  x )  -  ( ( *  o.  F ) `  C ) )  / 
( x  -  C
) ) )  =  ( x  e.  {
w  e.  X  |  w #  C }  |->  ( ( ( ( *  o.  F ) `  x
)  -  ( ( *  o.  F ) `
 C ) )  /  ( x  -  C ) ) )
89 fco 5461 . . . 4  |-  ( ( * : CC --> CC  /\  F : X --> CC )  ->  ( *  o.  F ) : X --> CC )
9048, 3, 89sylancr 414 . . 3  |-  ( ph  ->  ( *  o.  F
) : X --> CC )
916, 5, 88, 2, 90, 4eldvap 15269 . 2  |-  ( ph  ->  ( C ( RR 
_D  ( *  o.  F ) ) ( * `  ( ( RR  _D  F ) `
 C ) )  <-> 
( C  e.  ( ( int `  ( topGen `
 ran  (,) )
) `  X )  /\  ( * `  (
( RR  _D  F
) `  C )
)  e.  ( ( x  e.  { w  e.  X  |  w #  C }  |->  ( ( ( ( *  o.  F ) `  x
)  -  ( ( *  o.  F ) `
 C ) )  /  ( x  -  C ) ) ) lim
CC  C ) ) ) )
929, 87, 91mpbir2and 947 1  |-  ( ph  ->  C ( RR  _D  ( *  o.  F
) ) ( * `
 ( ( RR 
_D  F ) `  C ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2178   {crab 2490    C_ wss 3174   class class class wbr 4059    |-> cmpt 4121   dom cdm 4693   ran crn 4694    o. ccom 4697   Fun wfun 5284   -->wf 5286   ` cfv 5290  (class class class)co 5967    ^pm cpm 6759   CCcc 7958   RRcr 7959    - cmin 8278   # cap 8689    / cdiv 8780   (,)cioo 10045   *ccj 11265   abscabs 11423   topGenctg 13201   MetOpencmopn 14418   intcnt 14680    Cn ccn 14772    CnP ccnp 14773   -cn->ccncf 15157   lim CC climc 15241    _D cdv 15242
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-mulrcl 8059  ax-addcom 8060  ax-mulcom 8061  ax-addass 8062  ax-mulass 8063  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-1rid 8067  ax-0id 8068  ax-rnegex 8069  ax-precex 8070  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-apti 8075  ax-pre-ltadd 8076  ax-pre-mulgt0 8077  ax-pre-mulext 8078  ax-arch 8079  ax-caucvg 8080
This theorem depends on definitions:  df-bi 117  df-stab 833  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-if 3580  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-po 4361  df-iso 4362  df-iord 4431  df-on 4433  df-ilim 4434  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-isom 5299  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-recs 6414  df-frec 6500  df-map 6760  df-pm 6761  df-sup 7112  df-inf 7113  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-reap 8683  df-ap 8690  df-div 8781  df-inn 9072  df-2 9130  df-3 9131  df-4 9132  df-n0 9331  df-z 9408  df-uz 9684  df-q 9776  df-rp 9811  df-xneg 9929  df-xadd 9930  df-ioo 10049  df-seqfrec 10630  df-exp 10721  df-cj 11268  df-re 11269  df-im 11270  df-rsqrt 11424  df-abs 11425  df-rest 13188  df-topgen 13207  df-psmet 14420  df-xmet 14421  df-met 14422  df-bl 14423  df-mopn 14424  df-top 14585  df-topon 14598  df-bases 14630  df-ntr 14683  df-cn 14775  df-cnp 14776  df-cncf 15158  df-limced 15243  df-dvap 15244
This theorem is referenced by:  dvcj  15296
  Copyright terms: Public domain W3C validator