| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > dvcjbr | Unicode version | ||
| Description: The derivative of the conjugate of a function. For the (simpler but more limited) function version, see dvcj 14945. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Mario Carneiro, 10-Feb-2015.) | 
| Ref | Expression | 
|---|---|
| dvcj.f | 
 | 
| dvcj.x | 
 | 
| dvcj.c | 
 | 
| Ref | Expression | 
|---|---|
| dvcjbr | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ax-resscn 7971 | 
. . . . 5
 | |
| 2 | 1 | a1i 9 | 
. . . 4
 | 
| 3 | dvcj.f | 
. . . 4
 | |
| 4 | dvcj.x | 
. . . 4
 | |
| 5 | eqid 2196 | 
. . . . 5
 | |
| 6 | 5 | tgioo2cntop 14793 | 
. . . 4
 | 
| 7 | 2, 3, 4, 6, 5 | dvbssntrcntop 14920 | 
. . 3
 | 
| 8 | dvcj.c | 
. . 3
 | |
| 9 | 7, 8 | sseldd 3184 | 
. 2
 | 
| 10 | 4, 1 | sstrdi 3195 | 
. . . . . 6
 | 
| 11 | 1 | a1i 9 | 
. . . . . . . . 9
 | 
| 12 | simpl 109 | 
. . . . . . . . 9
 | |
| 13 | simpr 110 | 
. . . . . . . . 9
 | |
| 14 | 11, 12, 13 | dvbss 14921 | 
. . . . . . . 8
 | 
| 15 | 3, 4, 14 | syl2anc 411 | 
. . . . . . 7
 | 
| 16 | 15, 8 | sseldd 3184 | 
. . . . . 6
 | 
| 17 | 3, 10, 16 | dvlemap 14916 | 
. . . . 5
 | 
| 18 | 17 | fmpttd 5717 | 
. . . 4
 | 
| 19 | ssidd 3204 | 
. . . 4
 | |
| 20 | 5 | cntoptopon 14768 | 
. . . . 5
 | 
| 21 | 20 | toponrestid 14257 | 
. . . 4
 | 
| 22 | 3 | fdmd 5414 | 
. . . . . . . . . . . . 13
 | 
| 23 | 22 | feq2d 5395 | 
. . . . . . . . . . . 12
 | 
| 24 | 3, 23 | mpbird 167 | 
. . . . . . . . . . 11
 | 
| 25 | 22, 4 | eqsstrd 3219 | 
. . . . . . . . . . 11
 | 
| 26 | cnex 8003 | 
. . . . . . . . . . . 12
 | |
| 27 | reex 8013 | 
. . . . . . . . . . . 12
 | |
| 28 | 26, 27 | elpm2 6739 | 
. . . . . . . . . . 11
 | 
| 29 | 24, 25, 28 | sylanbrc 417 | 
. . . . . . . . . 10
 | 
| 30 | dvfpm 14925 | 
. . . . . . . . . 10
 | |
| 31 | 29, 30 | syl 14 | 
. . . . . . . . 9
 | 
| 32 | 31 | ffund 5411 | 
. . . . . . . 8
 | 
| 33 | funfvbrb 5675 | 
. . . . . . . 8
 | |
| 34 | 32, 33 | syl 14 | 
. . . . . . 7
 | 
| 35 | 8, 34 | mpbid 147 | 
. . . . . 6
 | 
| 36 | eqid 2196 | 
. . . . . . 7
 | |
| 37 | 6, 5, 36, 2, 3, 4 | eldvap 14918 | 
. . . . . 6
 | 
| 38 | 35, 37 | mpbid 147 | 
. . . . 5
 | 
| 39 | 38 | simprd 114 | 
. . . 4
 | 
| 40 | cjcncf 14824 | 
. . . . . 6
 | |
| 41 | 5 | cncfcn1cntop 14830 | 
. . . . . 6
 | 
| 42 | 40, 41 | eleqtri 2271 | 
. . . . 5
 | 
| 43 | 31, 8 | ffvelcdmd 5698 | 
. . . . 5
 | 
| 44 | unicntopcntop 14778 | 
. . . . . 6
 | |
| 45 | 44 | cncnpi 14464 | 
. . . . 5
 | 
| 46 | 42, 43, 45 | sylancr 414 | 
. . . 4
 | 
| 47 | 18, 19, 5, 21, 39, 46 | limccnpcntop 14911 | 
. . 3
 | 
| 48 | cjf 11012 | 
. . . . . . 7
 | |
| 49 | 48 | a1i 9 | 
. . . . . 6
 | 
| 50 | 49, 17 | cofmpt 5731 | 
. . . . 5
 | 
| 51 | 3 | adantr 276 | 
. . . . . . . . . 10
 | 
| 52 | elrabi 2917 | 
. . . . . . . . . . 11
 | |
| 53 | 52 | adantl 277 | 
. . . . . . . . . 10
 | 
| 54 | 51, 53 | ffvelcdmd 5698 | 
. . . . . . . . 9
 | 
| 55 | 3, 16 | ffvelcdmd 5698 | 
. . . . . . . . . 10
 | 
| 56 | 55 | adantr 276 | 
. . . . . . . . 9
 | 
| 57 | 54, 56 | subcld 8337 | 
. . . . . . . 8
 | 
| 58 | 4 | sselda 3183 | 
. . . . . . . . . . 11
 | 
| 59 | 52, 58 | sylan2 286 | 
. . . . . . . . . 10
 | 
| 60 | 4, 16 | sseldd 3184 | 
. . . . . . . . . . 11
 | 
| 61 | 60 | adantr 276 | 
. . . . . . . . . 10
 | 
| 62 | 59, 61 | resubcld 8407 | 
. . . . . . . . 9
 | 
| 63 | 62 | recnd 8055 | 
. . . . . . . 8
 | 
| 64 | 59 | recnd 8055 | 
. . . . . . . . 9
 | 
| 65 | 61 | recnd 8055 | 
. . . . . . . . 9
 | 
| 66 | breq1 4036 | 
. . . . . . . . . . . 12
 | |
| 67 | 66 | elrab 2920 | 
. . . . . . . . . . 11
 | 
| 68 | 67 | simprbi 275 | 
. . . . . . . . . 10
 | 
| 69 | 68 | adantl 277 | 
. . . . . . . . 9
 | 
| 70 | 64, 65, 69 | subap0d 8671 | 
. . . . . . . 8
 | 
| 71 | 57, 63, 70 | cjdivapd 11133 | 
. . . . . . 7
 | 
| 72 | cjsub 11057 | 
. . . . . . . . . 10
 | |
| 73 | 54, 56, 72 | syl2anc 411 | 
. . . . . . . . 9
 | 
| 74 | fvco3 5632 | 
. . . . . . . . . . 11
 | |
| 75 | 3, 52, 74 | syl2an 289 | 
. . . . . . . . . 10
 | 
| 76 | fvco3 5632 | 
. . . . . . . . . . . 12
 | |
| 77 | 3, 16, 76 | syl2anc 411 | 
. . . . . . . . . . 11
 | 
| 78 | 77 | adantr 276 | 
. . . . . . . . . 10
 | 
| 79 | 75, 78 | oveq12d 5940 | 
. . . . . . . . 9
 | 
| 80 | 73, 79 | eqtr4d 2232 | 
. . . . . . . 8
 | 
| 81 | 62 | cjred 11136 | 
. . . . . . . 8
 | 
| 82 | 80, 81 | oveq12d 5940 | 
. . . . . . 7
 | 
| 83 | 71, 82 | eqtrd 2229 | 
. . . . . 6
 | 
| 84 | 83 | mpteq2dva 4123 | 
. . . . 5
 | 
| 85 | 50, 84 | eqtrd 2229 | 
. . . 4
 | 
| 86 | 85 | oveq1d 5937 | 
. . 3
 | 
| 87 | 47, 86 | eleqtrd 2275 | 
. 2
 | 
| 88 | eqid 2196 | 
. . 3
 | |
| 89 | fco 5423 | 
. . . 4
 | |
| 90 | 48, 3, 89 | sylancr 414 | 
. . 3
 | 
| 91 | 6, 5, 88, 2, 90, 4 | eldvap 14918 | 
. 2
 | 
| 92 | 9, 87, 91 | mpbir2and 946 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-mulrcl 7978 ax-addcom 7979 ax-mulcom 7980 ax-addass 7981 ax-mulass 7982 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-1rid 7986 ax-0id 7987 ax-rnegex 7988 ax-precex 7989 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-apti 7994 ax-pre-ltadd 7995 ax-pre-mulgt0 7996 ax-pre-mulext 7997 ax-arch 7998 ax-caucvg 7999 | 
| This theorem depends on definitions: df-bi 117 df-stab 832 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-if 3562 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-id 4328 df-po 4331 df-iso 4332 df-iord 4401 df-on 4403 df-ilim 4404 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-isom 5267 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-recs 6363 df-frec 6449 df-map 6709 df-pm 6710 df-sup 7050 df-inf 7051 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-reap 8602 df-ap 8609 df-div 8700 df-inn 8991 df-2 9049 df-3 9050 df-4 9051 df-n0 9250 df-z 9327 df-uz 9602 df-q 9694 df-rp 9729 df-xneg 9847 df-xadd 9848 df-ioo 9967 df-seqfrec 10540 df-exp 10631 df-cj 11007 df-re 11008 df-im 11009 df-rsqrt 11163 df-abs 11164 df-rest 12912 df-topgen 12931 df-psmet 14099 df-xmet 14100 df-met 14101 df-bl 14102 df-mopn 14103 df-top 14234 df-topon 14247 df-bases 14279 df-ntr 14332 df-cn 14424 df-cnp 14425 df-cncf 14807 df-limced 14892 df-dvap 14893 | 
| This theorem is referenced by: dvcj 14945 | 
| Copyright terms: Public domain | W3C validator |