| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dvcjbr | Unicode version | ||
| Description: The derivative of the conjugate of a function. For the (simpler but more limited) function version, see dvcj 15296. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Mario Carneiro, 10-Feb-2015.) |
| Ref | Expression |
|---|---|
| dvcj.f |
|
| dvcj.x |
|
| dvcj.c |
|
| Ref | Expression |
|---|---|
| dvcjbr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-resscn 8052 |
. . . . 5
| |
| 2 | 1 | a1i 9 |
. . . 4
|
| 3 | dvcj.f |
. . . 4
| |
| 4 | dvcj.x |
. . . 4
| |
| 5 | eqid 2207 |
. . . . 5
| |
| 6 | 5 | tgioo2cntop 15144 |
. . . 4
|
| 7 | 2, 3, 4, 6, 5 | dvbssntrcntop 15271 |
. . 3
|
| 8 | dvcj.c |
. . 3
| |
| 9 | 7, 8 | sseldd 3202 |
. 2
|
| 10 | 4, 1 | sstrdi 3213 |
. . . . . 6
|
| 11 | 1 | a1i 9 |
. . . . . . . . 9
|
| 12 | simpl 109 |
. . . . . . . . 9
| |
| 13 | simpr 110 |
. . . . . . . . 9
| |
| 14 | 11, 12, 13 | dvbss 15272 |
. . . . . . . 8
|
| 15 | 3, 4, 14 | syl2anc 411 |
. . . . . . 7
|
| 16 | 15, 8 | sseldd 3202 |
. . . . . 6
|
| 17 | 3, 10, 16 | dvlemap 15267 |
. . . . 5
|
| 18 | 17 | fmpttd 5758 |
. . . 4
|
| 19 | ssidd 3222 |
. . . 4
| |
| 20 | 5 | cntoptopon 15119 |
. . . . 5
|
| 21 | 20 | toponrestid 14608 |
. . . 4
|
| 22 | 3 | fdmd 5452 |
. . . . . . . . . . . . 13
|
| 23 | 22 | feq2d 5433 |
. . . . . . . . . . . 12
|
| 24 | 3, 23 | mpbird 167 |
. . . . . . . . . . 11
|
| 25 | 22, 4 | eqsstrd 3237 |
. . . . . . . . . . 11
|
| 26 | cnex 8084 |
. . . . . . . . . . . 12
| |
| 27 | reex 8094 |
. . . . . . . . . . . 12
| |
| 28 | 26, 27 | elpm2 6790 |
. . . . . . . . . . 11
|
| 29 | 24, 25, 28 | sylanbrc 417 |
. . . . . . . . . 10
|
| 30 | dvfpm 15276 |
. . . . . . . . . 10
| |
| 31 | 29, 30 | syl 14 |
. . . . . . . . 9
|
| 32 | 31 | ffund 5449 |
. . . . . . . 8
|
| 33 | funfvbrb 5716 |
. . . . . . . 8
| |
| 34 | 32, 33 | syl 14 |
. . . . . . 7
|
| 35 | 8, 34 | mpbid 147 |
. . . . . 6
|
| 36 | eqid 2207 |
. . . . . . 7
| |
| 37 | 6, 5, 36, 2, 3, 4 | eldvap 15269 |
. . . . . 6
|
| 38 | 35, 37 | mpbid 147 |
. . . . 5
|
| 39 | 38 | simprd 114 |
. . . 4
|
| 40 | cjcncf 15175 |
. . . . . 6
| |
| 41 | 5 | cncfcn1cntop 15181 |
. . . . . 6
|
| 42 | 40, 41 | eleqtri 2282 |
. . . . 5
|
| 43 | 31, 8 | ffvelcdmd 5739 |
. . . . 5
|
| 44 | unicntopcntop 15129 |
. . . . . 6
| |
| 45 | 44 | cncnpi 14815 |
. . . . 5
|
| 46 | 42, 43, 45 | sylancr 414 |
. . . 4
|
| 47 | 18, 19, 5, 21, 39, 46 | limccnpcntop 15262 |
. . 3
|
| 48 | cjf 11273 |
. . . . . . 7
| |
| 49 | 48 | a1i 9 |
. . . . . 6
|
| 50 | 49, 17 | cofmpt 5772 |
. . . . 5
|
| 51 | 3 | adantr 276 |
. . . . . . . . . 10
|
| 52 | elrabi 2933 |
. . . . . . . . . . 11
| |
| 53 | 52 | adantl 277 |
. . . . . . . . . 10
|
| 54 | 51, 53 | ffvelcdmd 5739 |
. . . . . . . . 9
|
| 55 | 3, 16 | ffvelcdmd 5739 |
. . . . . . . . . 10
|
| 56 | 55 | adantr 276 |
. . . . . . . . 9
|
| 57 | 54, 56 | subcld 8418 |
. . . . . . . 8
|
| 58 | 4 | sselda 3201 |
. . . . . . . . . . 11
|
| 59 | 52, 58 | sylan2 286 |
. . . . . . . . . 10
|
| 60 | 4, 16 | sseldd 3202 |
. . . . . . . . . . 11
|
| 61 | 60 | adantr 276 |
. . . . . . . . . 10
|
| 62 | 59, 61 | resubcld 8488 |
. . . . . . . . 9
|
| 63 | 62 | recnd 8136 |
. . . . . . . 8
|
| 64 | 59 | recnd 8136 |
. . . . . . . . 9
|
| 65 | 61 | recnd 8136 |
. . . . . . . . 9
|
| 66 | breq1 4062 |
. . . . . . . . . . . 12
| |
| 67 | 66 | elrab 2936 |
. . . . . . . . . . 11
|
| 68 | 67 | simprbi 275 |
. . . . . . . . . 10
|
| 69 | 68 | adantl 277 |
. . . . . . . . 9
|
| 70 | 64, 65, 69 | subap0d 8752 |
. . . . . . . 8
|
| 71 | 57, 63, 70 | cjdivapd 11394 |
. . . . . . 7
|
| 72 | cjsub 11318 |
. . . . . . . . . 10
| |
| 73 | 54, 56, 72 | syl2anc 411 |
. . . . . . . . 9
|
| 74 | fvco3 5673 |
. . . . . . . . . . 11
| |
| 75 | 3, 52, 74 | syl2an 289 |
. . . . . . . . . 10
|
| 76 | fvco3 5673 |
. . . . . . . . . . . 12
| |
| 77 | 3, 16, 76 | syl2anc 411 |
. . . . . . . . . . 11
|
| 78 | 77 | adantr 276 |
. . . . . . . . . 10
|
| 79 | 75, 78 | oveq12d 5985 |
. . . . . . . . 9
|
| 80 | 73, 79 | eqtr4d 2243 |
. . . . . . . 8
|
| 81 | 62 | cjred 11397 |
. . . . . . . 8
|
| 82 | 80, 81 | oveq12d 5985 |
. . . . . . 7
|
| 83 | 71, 82 | eqtrd 2240 |
. . . . . 6
|
| 84 | 83 | mpteq2dva 4150 |
. . . . 5
|
| 85 | 50, 84 | eqtrd 2240 |
. . . 4
|
| 86 | 85 | oveq1d 5982 |
. . 3
|
| 87 | 47, 86 | eleqtrd 2286 |
. 2
|
| 88 | eqid 2207 |
. . 3
| |
| 89 | fco 5461 |
. . . 4
| |
| 90 | 48, 3, 89 | sylancr 414 |
. . 3
|
| 91 | 6, 5, 88, 2, 90, 4 | eldvap 15269 |
. 2
|
| 92 | 9, 87, 91 | mpbir2and 947 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-iinf 4654 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-mulrcl 8059 ax-addcom 8060 ax-mulcom 8061 ax-addass 8062 ax-mulass 8063 ax-distr 8064 ax-i2m1 8065 ax-0lt1 8066 ax-1rid 8067 ax-0id 8068 ax-rnegex 8069 ax-precex 8070 ax-cnre 8071 ax-pre-ltirr 8072 ax-pre-ltwlin 8073 ax-pre-lttrn 8074 ax-pre-apti 8075 ax-pre-ltadd 8076 ax-pre-mulgt0 8077 ax-pre-mulext 8078 ax-arch 8079 ax-caucvg 8080 |
| This theorem depends on definitions: df-bi 117 df-stab 833 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-reu 2493 df-rmo 2494 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-if 3580 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-tr 4159 df-id 4358 df-po 4361 df-iso 4362 df-iord 4431 df-on 4433 df-ilim 4434 df-suc 4436 df-iom 4657 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-isom 5299 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-1st 6249 df-2nd 6250 df-recs 6414 df-frec 6500 df-map 6760 df-pm 6761 df-sup 7112 df-inf 7113 df-pnf 8144 df-mnf 8145 df-xr 8146 df-ltxr 8147 df-le 8148 df-sub 8280 df-neg 8281 df-reap 8683 df-ap 8690 df-div 8781 df-inn 9072 df-2 9130 df-3 9131 df-4 9132 df-n0 9331 df-z 9408 df-uz 9684 df-q 9776 df-rp 9811 df-xneg 9929 df-xadd 9930 df-ioo 10049 df-seqfrec 10630 df-exp 10721 df-cj 11268 df-re 11269 df-im 11270 df-rsqrt 11424 df-abs 11425 df-rest 13188 df-topgen 13207 df-psmet 14420 df-xmet 14421 df-met 14422 df-bl 14423 df-mopn 14424 df-top 14585 df-topon 14598 df-bases 14630 df-ntr 14683 df-cn 14775 df-cnp 14776 df-cncf 15158 df-limced 15243 df-dvap 15244 |
| This theorem is referenced by: dvcj 15296 |
| Copyright terms: Public domain | W3C validator |