ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvcjbr Unicode version

Theorem dvcjbr 14468
Description: The derivative of the conjugate of a function. For the (simpler but more limited) function version, see dvcj 14469. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Mario Carneiro, 10-Feb-2015.)
Hypotheses
Ref Expression
dvcj.f  |-  ( ph  ->  F : X --> CC )
dvcj.x  |-  ( ph  ->  X  C_  RR )
dvcj.c  |-  ( ph  ->  C  e.  dom  ( RR  _D  F ) )
Assertion
Ref Expression
dvcjbr  |-  ( ph  ->  C ( RR  _D  ( *  o.  F
) ) ( * `
 ( ( RR 
_D  F ) `  C ) ) )

Proof of Theorem dvcjbr
Dummy variables  x  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ax-resscn 7917 . . . . 5  |-  RR  C_  CC
21a1i 9 . . . 4  |-  ( ph  ->  RR  C_  CC )
3 dvcj.f . . . 4  |-  ( ph  ->  F : X --> CC )
4 dvcj.x . . . 4  |-  ( ph  ->  X  C_  RR )
5 eqid 2187 . . . . 5  |-  ( MetOpen `  ( abs  o.  -  )
)  =  ( MetOpen `  ( abs  o.  -  )
)
65tgioo2cntop 14345 . . . 4  |-  ( topGen ` 
ran  (,) )  =  ( ( MetOpen `  ( abs  o. 
-  ) )t  RR )
72, 3, 4, 6, 5dvbssntrcntop 14449 . . 3  |-  ( ph  ->  dom  ( RR  _D  F )  C_  (
( int `  ( topGen `
 ran  (,) )
) `  X )
)
8 dvcj.c . . 3  |-  ( ph  ->  C  e.  dom  ( RR  _D  F ) )
97, 8sseldd 3168 . 2  |-  ( ph  ->  C  e.  ( ( int `  ( topGen ` 
ran  (,) ) ) `  X ) )
104, 1sstrdi 3179 . . . . . 6  |-  ( ph  ->  X  C_  CC )
111a1i 9 . . . . . . . . 9  |-  ( ( F : X --> CC  /\  X  C_  RR )  ->  RR  C_  CC )
12 simpl 109 . . . . . . . . 9  |-  ( ( F : X --> CC  /\  X  C_  RR )  ->  F : X --> CC )
13 simpr 110 . . . . . . . . 9  |-  ( ( F : X --> CC  /\  X  C_  RR )  ->  X  C_  RR )
1411, 12, 13dvbss 14450 . . . . . . . 8  |-  ( ( F : X --> CC  /\  X  C_  RR )  ->  dom  ( RR  _D  F
)  C_  X )
153, 4, 14syl2anc 411 . . . . . . 7  |-  ( ph  ->  dom  ( RR  _D  F )  C_  X
)
1615, 8sseldd 3168 . . . . . 6  |-  ( ph  ->  C  e.  X )
173, 10, 16dvlemap 14445 . . . . 5  |-  ( (
ph  /\  x  e.  { w  e.  X  |  w #  C } )  -> 
( ( ( F `
 x )  -  ( F `  C ) )  /  ( x  -  C ) )  e.  CC )
1817fmpttd 5684 . . . 4  |-  ( ph  ->  ( x  e.  {
w  e.  X  |  w #  C }  |->  ( ( ( F `  x
)  -  ( F `
 C ) )  /  ( x  -  C ) ) ) : { w  e.  X  |  w #  C }
--> CC )
19 ssidd 3188 . . . 4  |-  ( ph  ->  CC  C_  CC )
205cntoptopon 14328 . . . . 5  |-  ( MetOpen `  ( abs  o.  -  )
)  e.  (TopOn `  CC )
2120toponrestid 13817 . . . 4  |-  ( MetOpen `  ( abs  o.  -  )
)  =  ( (
MetOpen `  ( abs  o.  -  ) )t  CC )
223fdmd 5384 . . . . . . . . . . . . 13  |-  ( ph  ->  dom  F  =  X )
2322feq2d 5365 . . . . . . . . . . . 12  |-  ( ph  ->  ( F : dom  F --> CC  <->  F : X --> CC ) )
243, 23mpbird 167 . . . . . . . . . . 11  |-  ( ph  ->  F : dom  F --> CC )
2522, 4eqsstrd 3203 . . . . . . . . . . 11  |-  ( ph  ->  dom  F  C_  RR )
26 cnex 7949 . . . . . . . . . . . 12  |-  CC  e.  _V
27 reex 7959 . . . . . . . . . . . 12  |-  RR  e.  _V
2826, 27elpm2 6694 . . . . . . . . . . 11  |-  ( F  e.  ( CC  ^pm  RR )  <->  ( F : dom  F --> CC  /\  dom  F 
C_  RR ) )
2924, 25, 28sylanbrc 417 . . . . . . . . . 10  |-  ( ph  ->  F  e.  ( CC 
^pm  RR ) )
30 dvfpm 14454 . . . . . . . . . 10  |-  ( F  e.  ( CC  ^pm  RR )  ->  ( RR  _D  F ) : dom  ( RR  _D  F
) --> CC )
3129, 30syl 14 . . . . . . . . 9  |-  ( ph  ->  ( RR  _D  F
) : dom  ( RR  _D  F ) --> CC )
3231ffund 5381 . . . . . . . 8  |-  ( ph  ->  Fun  ( RR  _D  F ) )
33 funfvbrb 5642 . . . . . . . 8  |-  ( Fun  ( RR  _D  F
)  ->  ( C  e.  dom  ( RR  _D  F )  <->  C ( RR  _D  F ) ( ( RR  _D  F
) `  C )
) )
3432, 33syl 14 . . . . . . 7  |-  ( ph  ->  ( C  e.  dom  ( RR  _D  F
)  <->  C ( RR  _D  F ) ( ( RR  _D  F ) `
 C ) ) )
358, 34mpbid 147 . . . . . 6  |-  ( ph  ->  C ( RR  _D  F ) ( ( RR  _D  F ) `
 C ) )
36 eqid 2187 . . . . . . 7  |-  ( x  e.  { w  e.  X  |  w #  C }  |->  ( ( ( F `  x )  -  ( F `  C ) )  / 
( x  -  C
) ) )  =  ( x  e.  {
w  e.  X  |  w #  C }  |->  ( ( ( F `  x
)  -  ( F `
 C ) )  /  ( x  -  C ) ) )
376, 5, 36, 2, 3, 4eldvap 14447 . . . . . 6  |-  ( ph  ->  ( C ( RR 
_D  F ) ( ( RR  _D  F
) `  C )  <->  ( C  e.  ( ( int `  ( topGen ` 
ran  (,) ) ) `  X )  /\  (
( RR  _D  F
) `  C )  e.  ( ( x  e. 
{ w  e.  X  |  w #  C }  |->  ( ( ( F `
 x )  -  ( F `  C ) )  /  ( x  -  C ) ) ) lim CC  C ) ) ) )
3835, 37mpbid 147 . . . . 5  |-  ( ph  ->  ( C  e.  ( ( int `  ( topGen `
 ran  (,) )
) `  X )  /\  ( ( RR  _D  F ) `  C
)  e.  ( ( x  e.  { w  e.  X  |  w #  C }  |->  ( ( ( F `  x
)  -  ( F `
 C ) )  /  ( x  -  C ) ) ) lim
CC  C ) ) )
3938simprd 114 . . . 4  |-  ( ph  ->  ( ( RR  _D  F ) `  C
)  e.  ( ( x  e.  { w  e.  X  |  w #  C }  |->  ( ( ( F `  x
)  -  ( F `
 C ) )  /  ( x  -  C ) ) ) lim
CC  C ) )
40 cjcncf 14371 . . . . . 6  |-  *  e.  ( CC -cn-> CC )
415cncfcn1cntop 14377 . . . . . 6  |-  ( CC
-cn-> CC )  =  ( ( MetOpen `  ( abs  o. 
-  ) )  Cn  ( MetOpen `  ( abs  o. 
-  ) ) )
4240, 41eleqtri 2262 . . . . 5  |-  *  e.  ( ( MetOpen `  ( abs  o.  -  ) )  Cn  ( MetOpen `  ( abs  o.  -  ) ) )
4331, 8ffvelcdmd 5665 . . . . 5  |-  ( ph  ->  ( ( RR  _D  F ) `  C
)  e.  CC )
44 unicntopcntop 14332 . . . . . 6  |-  CC  =  U. ( MetOpen `  ( abs  o. 
-  ) )
4544cncnpi 14024 . . . . 5  |-  ( ( *  e.  ( (
MetOpen `  ( abs  o.  -  ) )  Cn  ( MetOpen `  ( abs  o. 
-  ) ) )  /\  ( ( RR 
_D  F ) `  C )  e.  CC )  ->  *  e.  ( ( ( MetOpen `  ( abs  o.  -  ) )  CnP  ( MetOpen `  ( abs  o.  -  ) ) ) `  ( ( RR  _D  F ) `
 C ) ) )
4642, 43, 45sylancr 414 . . . 4  |-  ( ph  ->  *  e.  ( ( ( MetOpen `  ( abs  o. 
-  ) )  CnP  ( MetOpen `  ( abs  o. 
-  ) ) ) `
 ( ( RR 
_D  F ) `  C ) ) )
4718, 19, 5, 21, 39, 46limccnpcntop 14440 . . 3  |-  ( ph  ->  ( * `  (
( RR  _D  F
) `  C )
)  e.  ( ( *  o.  ( x  e.  { w  e.  X  |  w #  C }  |->  ( ( ( F `  x )  -  ( F `  C ) )  / 
( x  -  C
) ) ) ) lim
CC  C ) )
48 cjf 10870 . . . . . . 7  |-  * : CC --> CC
4948a1i 9 . . . . . 6  |-  ( ph  ->  * : CC --> CC )
5049, 17cofmpt 5698 . . . . 5  |-  ( ph  ->  ( *  o.  (
x  e.  { w  e.  X  |  w #  C }  |->  ( ( ( F `  x
)  -  ( F `
 C ) )  /  ( x  -  C ) ) ) )  =  ( x  e.  { w  e.  X  |  w #  C }  |->  ( * `  ( ( ( F `
 x )  -  ( F `  C ) )  /  ( x  -  C ) ) ) ) )
513adantr 276 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  { w  e.  X  |  w #  C } )  ->  F : X --> CC )
52 elrabi 2902 . . . . . . . . . . 11  |-  ( x  e.  { w  e.  X  |  w #  C }  ->  x  e.  X
)
5352adantl 277 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  { w  e.  X  |  w #  C } )  ->  x  e.  X )
5451, 53ffvelcdmd 5665 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  { w  e.  X  |  w #  C } )  -> 
( F `  x
)  e.  CC )
553, 16ffvelcdmd 5665 . . . . . . . . . 10  |-  ( ph  ->  ( F `  C
)  e.  CC )
5655adantr 276 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  { w  e.  X  |  w #  C } )  -> 
( F `  C
)  e.  CC )
5754, 56subcld 8282 . . . . . . . 8  |-  ( (
ph  /\  x  e.  { w  e.  X  |  w #  C } )  -> 
( ( F `  x )  -  ( F `  C )
)  e.  CC )
584sselda 3167 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  X )  ->  x  e.  RR )
5952, 58sylan2 286 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  { w  e.  X  |  w #  C } )  ->  x  e.  RR )
604, 16sseldd 3168 . . . . . . . . . . 11  |-  ( ph  ->  C  e.  RR )
6160adantr 276 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  { w  e.  X  |  w #  C } )  ->  C  e.  RR )
6259, 61resubcld 8352 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  { w  e.  X  |  w #  C } )  -> 
( x  -  C
)  e.  RR )
6362recnd 8000 . . . . . . . 8  |-  ( (
ph  /\  x  e.  { w  e.  X  |  w #  C } )  -> 
( x  -  C
)  e.  CC )
6459recnd 8000 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  { w  e.  X  |  w #  C } )  ->  x  e.  CC )
6561recnd 8000 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  { w  e.  X  |  w #  C } )  ->  C  e.  CC )
66 breq1 4018 . . . . . . . . . . . 12  |-  ( w  =  x  ->  (
w #  C  <->  x #  C
) )
6766elrab 2905 . . . . . . . . . . 11  |-  ( x  e.  { w  e.  X  |  w #  C } 
<->  ( x  e.  X  /\  x #  C )
)
6867simprbi 275 . . . . . . . . . 10  |-  ( x  e.  { w  e.  X  |  w #  C }  ->  x #  C )
6968adantl 277 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  { w  e.  X  |  w #  C } )  ->  x #  C )
7064, 65, 69subap0d 8615 . . . . . . . 8  |-  ( (
ph  /\  x  e.  { w  e.  X  |  w #  C } )  -> 
( x  -  C
) #  0 )
7157, 63, 70cjdivapd 10991 . . . . . . 7  |-  ( (
ph  /\  x  e.  { w  e.  X  |  w #  C } )  -> 
( * `  (
( ( F `  x )  -  ( F `  C )
)  /  ( x  -  C ) ) )  =  ( ( * `  ( ( F `  x )  -  ( F `  C ) ) )  /  ( * `  ( x  -  C
) ) ) )
72 cjsub 10915 . . . . . . . . . 10  |-  ( ( ( F `  x
)  e.  CC  /\  ( F `  C )  e.  CC )  -> 
( * `  (
( F `  x
)  -  ( F `
 C ) ) )  =  ( ( * `  ( F `
 x ) )  -  ( * `  ( F `  C ) ) ) )
7354, 56, 72syl2anc 411 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  { w  e.  X  |  w #  C } )  -> 
( * `  (
( F `  x
)  -  ( F `
 C ) ) )  =  ( ( * `  ( F `
 x ) )  -  ( * `  ( F `  C ) ) ) )
74 fvco3 5600 . . . . . . . . . . 11  |-  ( ( F : X --> CC  /\  x  e.  X )  ->  ( ( *  o.  F ) `  x
)  =  ( * `
 ( F `  x ) ) )
753, 52, 74syl2an 289 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  { w  e.  X  |  w #  C } )  -> 
( ( *  o.  F ) `  x
)  =  ( * `
 ( F `  x ) ) )
76 fvco3 5600 . . . . . . . . . . . 12  |-  ( ( F : X --> CC  /\  C  e.  X )  ->  ( ( *  o.  F ) `  C
)  =  ( * `
 ( F `  C ) ) )
773, 16, 76syl2anc 411 . . . . . . . . . . 11  |-  ( ph  ->  ( ( *  o.  F ) `  C
)  =  ( * `
 ( F `  C ) ) )
7877adantr 276 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  { w  e.  X  |  w #  C } )  -> 
( ( *  o.  F ) `  C
)  =  ( * `
 ( F `  C ) ) )
7975, 78oveq12d 5906 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  { w  e.  X  |  w #  C } )  -> 
( ( ( *  o.  F ) `  x )  -  (
( *  o.  F
) `  C )
)  =  ( ( * `  ( F `
 x ) )  -  ( * `  ( F `  C ) ) ) )
8073, 79eqtr4d 2223 . . . . . . . 8  |-  ( (
ph  /\  x  e.  { w  e.  X  |  w #  C } )  -> 
( * `  (
( F `  x
)  -  ( F `
 C ) ) )  =  ( ( ( *  o.  F
) `  x )  -  ( ( *  o.  F ) `  C ) ) )
8162cjred 10994 . . . . . . . 8  |-  ( (
ph  /\  x  e.  { w  e.  X  |  w #  C } )  -> 
( * `  (
x  -  C ) )  =  ( x  -  C ) )
8280, 81oveq12d 5906 . . . . . . 7  |-  ( (
ph  /\  x  e.  { w  e.  X  |  w #  C } )  -> 
( ( * `  ( ( F `  x )  -  ( F `  C )
) )  /  (
* `  ( x  -  C ) ) )  =  ( ( ( ( *  o.  F
) `  x )  -  ( ( *  o.  F ) `  C ) )  / 
( x  -  C
) ) )
8371, 82eqtrd 2220 . . . . . 6  |-  ( (
ph  /\  x  e.  { w  e.  X  |  w #  C } )  -> 
( * `  (
( ( F `  x )  -  ( F `  C )
)  /  ( x  -  C ) ) )  =  ( ( ( ( *  o.  F ) `  x
)  -  ( ( *  o.  F ) `
 C ) )  /  ( x  -  C ) ) )
8483mpteq2dva 4105 . . . . 5  |-  ( ph  ->  ( x  e.  {
w  e.  X  |  w #  C }  |->  ( * `
 ( ( ( F `  x )  -  ( F `  C ) )  / 
( x  -  C
) ) ) )  =  ( x  e. 
{ w  e.  X  |  w #  C }  |->  ( ( ( ( *  o.  F ) `
 x )  -  ( ( *  o.  F ) `  C
) )  /  (
x  -  C ) ) ) )
8550, 84eqtrd 2220 . . . 4  |-  ( ph  ->  ( *  o.  (
x  e.  { w  e.  X  |  w #  C }  |->  ( ( ( F `  x
)  -  ( F `
 C ) )  /  ( x  -  C ) ) ) )  =  ( x  e.  { w  e.  X  |  w #  C }  |->  ( ( ( ( *  o.  F
) `  x )  -  ( ( *  o.  F ) `  C ) )  / 
( x  -  C
) ) ) )
8685oveq1d 5903 . . 3  |-  ( ph  ->  ( ( *  o.  ( x  e.  {
w  e.  X  |  w #  C }  |->  ( ( ( F `  x
)  -  ( F `
 C ) )  /  ( x  -  C ) ) ) ) lim CC  C )  =  ( ( x  e.  { w  e.  X  |  w #  C }  |->  ( ( ( ( *  o.  F
) `  x )  -  ( ( *  o.  F ) `  C ) )  / 
( x  -  C
) ) ) lim CC  C ) )
8747, 86eleqtrd 2266 . 2  |-  ( ph  ->  ( * `  (
( RR  _D  F
) `  C )
)  e.  ( ( x  e.  { w  e.  X  |  w #  C }  |->  ( ( ( ( *  o.  F ) `  x
)  -  ( ( *  o.  F ) `
 C ) )  /  ( x  -  C ) ) ) lim
CC  C ) )
88 eqid 2187 . . 3  |-  ( x  e.  { w  e.  X  |  w #  C }  |->  ( ( ( ( *  o.  F
) `  x )  -  ( ( *  o.  F ) `  C ) )  / 
( x  -  C
) ) )  =  ( x  e.  {
w  e.  X  |  w #  C }  |->  ( ( ( ( *  o.  F ) `  x
)  -  ( ( *  o.  F ) `
 C ) )  /  ( x  -  C ) ) )
89 fco 5393 . . . 4  |-  ( ( * : CC --> CC  /\  F : X --> CC )  ->  ( *  o.  F ) : X --> CC )
9048, 3, 89sylancr 414 . . 3  |-  ( ph  ->  ( *  o.  F
) : X --> CC )
916, 5, 88, 2, 90, 4eldvap 14447 . 2  |-  ( ph  ->  ( C ( RR 
_D  ( *  o.  F ) ) ( * `  ( ( RR  _D  F ) `
 C ) )  <-> 
( C  e.  ( ( int `  ( topGen `
 ran  (,) )
) `  X )  /\  ( * `  (
( RR  _D  F
) `  C )
)  e.  ( ( x  e.  { w  e.  X  |  w #  C }  |->  ( ( ( ( *  o.  F ) `  x
)  -  ( ( *  o.  F ) `
 C ) )  /  ( x  -  C ) ) ) lim
CC  C ) ) ) )
929, 87, 91mpbir2and 945 1  |-  ( ph  ->  C ( RR  _D  ( *  o.  F
) ) ( * `
 ( ( RR 
_D  F ) `  C ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1363    e. wcel 2158   {crab 2469    C_ wss 3141   class class class wbr 4015    |-> cmpt 4076   dom cdm 4638   ran crn 4639    o. ccom 4642   Fun wfun 5222   -->wf 5224   ` cfv 5228  (class class class)co 5888    ^pm cpm 6663   CCcc 7823   RRcr 7824    - cmin 8142   # cap 8552    / cdiv 8643   (,)cioo 9902   *ccj 10862   abscabs 11020   topGenctg 12721   MetOpencmopn 13727   intcnt 13889    Cn ccn 13981    CnP ccnp 13982   -cn->ccncf 14353   lim CC climc 14419    _D cdv 14420
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-coll 4130  ax-sep 4133  ax-nul 4141  ax-pow 4186  ax-pr 4221  ax-un 4445  ax-setind 4548  ax-iinf 4599  ax-cnex 7916  ax-resscn 7917  ax-1cn 7918  ax-1re 7919  ax-icn 7920  ax-addcl 7921  ax-addrcl 7922  ax-mulcl 7923  ax-mulrcl 7924  ax-addcom 7925  ax-mulcom 7926  ax-addass 7927  ax-mulass 7928  ax-distr 7929  ax-i2m1 7930  ax-0lt1 7931  ax-1rid 7932  ax-0id 7933  ax-rnegex 7934  ax-precex 7935  ax-cnre 7936  ax-pre-ltirr 7937  ax-pre-ltwlin 7938  ax-pre-lttrn 7939  ax-pre-apti 7940  ax-pre-ltadd 7941  ax-pre-mulgt0 7942  ax-pre-mulext 7943  ax-arch 7944  ax-caucvg 7945
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 980  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ne 2358  df-nel 2453  df-ral 2470  df-rex 2471  df-reu 2472  df-rmo 2473  df-rab 2474  df-v 2751  df-sbc 2975  df-csb 3070  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-nul 3435  df-if 3547  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-int 3857  df-iun 3900  df-br 4016  df-opab 4077  df-mpt 4078  df-tr 4114  df-id 4305  df-po 4308  df-iso 4309  df-iord 4378  df-on 4380  df-ilim 4381  df-suc 4383  df-iom 4602  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-rn 4649  df-res 4650  df-ima 4651  df-iota 5190  df-fun 5230  df-fn 5231  df-f 5232  df-f1 5233  df-fo 5234  df-f1o 5235  df-fv 5236  df-isom 5237  df-riota 5844  df-ov 5891  df-oprab 5892  df-mpo 5893  df-1st 6155  df-2nd 6156  df-recs 6320  df-frec 6406  df-map 6664  df-pm 6665  df-sup 6997  df-inf 6998  df-pnf 8008  df-mnf 8009  df-xr 8010  df-ltxr 8011  df-le 8012  df-sub 8144  df-neg 8145  df-reap 8546  df-ap 8553  df-div 8644  df-inn 8934  df-2 8992  df-3 8993  df-4 8994  df-n0 9191  df-z 9268  df-uz 9543  df-q 9634  df-rp 9668  df-xneg 9786  df-xadd 9787  df-ioo 9906  df-seqfrec 10460  df-exp 10534  df-cj 10865  df-re 10866  df-im 10867  df-rsqrt 11021  df-abs 11022  df-rest 12708  df-topgen 12727  df-psmet 13729  df-xmet 13730  df-met 13731  df-bl 13732  df-mopn 13733  df-top 13794  df-topon 13807  df-bases 13839  df-ntr 13892  df-cn 13984  df-cnp 13985  df-cncf 14354  df-limced 14421  df-dvap 14422
This theorem is referenced by:  dvcj  14469
  Copyright terms: Public domain W3C validator