ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvcjbr Unicode version

Theorem dvcjbr 13839
Description: The derivative of the conjugate of a function. For the (simpler but more limited) function version, see dvcj 13840. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Mario Carneiro, 10-Feb-2015.)
Hypotheses
Ref Expression
dvcj.f  |-  ( ph  ->  F : X --> CC )
dvcj.x  |-  ( ph  ->  X  C_  RR )
dvcj.c  |-  ( ph  ->  C  e.  dom  ( RR  _D  F ) )
Assertion
Ref Expression
dvcjbr  |-  ( ph  ->  C ( RR  _D  ( *  o.  F
) ) ( * `
 ( ( RR 
_D  F ) `  C ) ) )

Proof of Theorem dvcjbr
Dummy variables  x  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ax-resscn 7894 . . . . 5  |-  RR  C_  CC
21a1i 9 . . . 4  |-  ( ph  ->  RR  C_  CC )
3 dvcj.f . . . 4  |-  ( ph  ->  F : X --> CC )
4 dvcj.x . . . 4  |-  ( ph  ->  X  C_  RR )
5 eqid 2177 . . . . 5  |-  ( MetOpen `  ( abs  o.  -  )
)  =  ( MetOpen `  ( abs  o.  -  )
)
65tgioo2cntop 13716 . . . 4  |-  ( topGen ` 
ran  (,) )  =  ( ( MetOpen `  ( abs  o. 
-  ) )t  RR )
72, 3, 4, 6, 5dvbssntrcntop 13820 . . 3  |-  ( ph  ->  dom  ( RR  _D  F )  C_  (
( int `  ( topGen `
 ran  (,) )
) `  X )
)
8 dvcj.c . . 3  |-  ( ph  ->  C  e.  dom  ( RR  _D  F ) )
97, 8sseldd 3156 . 2  |-  ( ph  ->  C  e.  ( ( int `  ( topGen ` 
ran  (,) ) ) `  X ) )
104, 1sstrdi 3167 . . . . . 6  |-  ( ph  ->  X  C_  CC )
111a1i 9 . . . . . . . . 9  |-  ( ( F : X --> CC  /\  X  C_  RR )  ->  RR  C_  CC )
12 simpl 109 . . . . . . . . 9  |-  ( ( F : X --> CC  /\  X  C_  RR )  ->  F : X --> CC )
13 simpr 110 . . . . . . . . 9  |-  ( ( F : X --> CC  /\  X  C_  RR )  ->  X  C_  RR )
1411, 12, 13dvbss 13821 . . . . . . . 8  |-  ( ( F : X --> CC  /\  X  C_  RR )  ->  dom  ( RR  _D  F
)  C_  X )
153, 4, 14syl2anc 411 . . . . . . 7  |-  ( ph  ->  dom  ( RR  _D  F )  C_  X
)
1615, 8sseldd 3156 . . . . . 6  |-  ( ph  ->  C  e.  X )
173, 10, 16dvlemap 13816 . . . . 5  |-  ( (
ph  /\  x  e.  { w  e.  X  |  w #  C } )  -> 
( ( ( F `
 x )  -  ( F `  C ) )  /  ( x  -  C ) )  e.  CC )
1817fmpttd 5667 . . . 4  |-  ( ph  ->  ( x  e.  {
w  e.  X  |  w #  C }  |->  ( ( ( F `  x
)  -  ( F `
 C ) )  /  ( x  -  C ) ) ) : { w  e.  X  |  w #  C }
--> CC )
19 ssidd 3176 . . . 4  |-  ( ph  ->  CC  C_  CC )
205cntoptopon 13699 . . . . 5  |-  ( MetOpen `  ( abs  o.  -  )
)  e.  (TopOn `  CC )
2120toponrestid 13186 . . . 4  |-  ( MetOpen `  ( abs  o.  -  )
)  =  ( (
MetOpen `  ( abs  o.  -  ) )t  CC )
223fdmd 5368 . . . . . . . . . . . . 13  |-  ( ph  ->  dom  F  =  X )
2322feq2d 5349 . . . . . . . . . . . 12  |-  ( ph  ->  ( F : dom  F --> CC  <->  F : X --> CC ) )
243, 23mpbird 167 . . . . . . . . . . 11  |-  ( ph  ->  F : dom  F --> CC )
2522, 4eqsstrd 3191 . . . . . . . . . . 11  |-  ( ph  ->  dom  F  C_  RR )
26 cnex 7926 . . . . . . . . . . . 12  |-  CC  e.  _V
27 reex 7936 . . . . . . . . . . . 12  |-  RR  e.  _V
2826, 27elpm2 6674 . . . . . . . . . . 11  |-  ( F  e.  ( CC  ^pm  RR )  <->  ( F : dom  F --> CC  /\  dom  F 
C_  RR ) )
2924, 25, 28sylanbrc 417 . . . . . . . . . 10  |-  ( ph  ->  F  e.  ( CC 
^pm  RR ) )
30 dvfpm 13825 . . . . . . . . . 10  |-  ( F  e.  ( CC  ^pm  RR )  ->  ( RR  _D  F ) : dom  ( RR  _D  F
) --> CC )
3129, 30syl 14 . . . . . . . . 9  |-  ( ph  ->  ( RR  _D  F
) : dom  ( RR  _D  F ) --> CC )
3231ffund 5365 . . . . . . . 8  |-  ( ph  ->  Fun  ( RR  _D  F ) )
33 funfvbrb 5625 . . . . . . . 8  |-  ( Fun  ( RR  _D  F
)  ->  ( C  e.  dom  ( RR  _D  F )  <->  C ( RR  _D  F ) ( ( RR  _D  F
) `  C )
) )
3432, 33syl 14 . . . . . . 7  |-  ( ph  ->  ( C  e.  dom  ( RR  _D  F
)  <->  C ( RR  _D  F ) ( ( RR  _D  F ) `
 C ) ) )
358, 34mpbid 147 . . . . . 6  |-  ( ph  ->  C ( RR  _D  F ) ( ( RR  _D  F ) `
 C ) )
36 eqid 2177 . . . . . . 7  |-  ( x  e.  { w  e.  X  |  w #  C }  |->  ( ( ( F `  x )  -  ( F `  C ) )  / 
( x  -  C
) ) )  =  ( x  e.  {
w  e.  X  |  w #  C }  |->  ( ( ( F `  x
)  -  ( F `
 C ) )  /  ( x  -  C ) ) )
376, 5, 36, 2, 3, 4eldvap 13818 . . . . . 6  |-  ( ph  ->  ( C ( RR 
_D  F ) ( ( RR  _D  F
) `  C )  <->  ( C  e.  ( ( int `  ( topGen ` 
ran  (,) ) ) `  X )  /\  (
( RR  _D  F
) `  C )  e.  ( ( x  e. 
{ w  e.  X  |  w #  C }  |->  ( ( ( F `
 x )  -  ( F `  C ) )  /  ( x  -  C ) ) ) lim CC  C ) ) ) )
3835, 37mpbid 147 . . . . 5  |-  ( ph  ->  ( C  e.  ( ( int `  ( topGen `
 ran  (,) )
) `  X )  /\  ( ( RR  _D  F ) `  C
)  e.  ( ( x  e.  { w  e.  X  |  w #  C }  |->  ( ( ( F `  x
)  -  ( F `
 C ) )  /  ( x  -  C ) ) ) lim
CC  C ) ) )
3938simprd 114 . . . 4  |-  ( ph  ->  ( ( RR  _D  F ) `  C
)  e.  ( ( x  e.  { w  e.  X  |  w #  C }  |->  ( ( ( F `  x
)  -  ( F `
 C ) )  /  ( x  -  C ) ) ) lim
CC  C ) )
40 cjcncf 13742 . . . . . 6  |-  *  e.  ( CC -cn-> CC )
415cncfcn1cntop 13748 . . . . . 6  |-  ( CC
-cn-> CC )  =  ( ( MetOpen `  ( abs  o. 
-  ) )  Cn  ( MetOpen `  ( abs  o. 
-  ) ) )
4240, 41eleqtri 2252 . . . . 5  |-  *  e.  ( ( MetOpen `  ( abs  o.  -  ) )  Cn  ( MetOpen `  ( abs  o.  -  ) ) )
4331, 8ffvelcdmd 5648 . . . . 5  |-  ( ph  ->  ( ( RR  _D  F ) `  C
)  e.  CC )
44 unicntopcntop 13703 . . . . . 6  |-  CC  =  U. ( MetOpen `  ( abs  o. 
-  ) )
4544cncnpi 13395 . . . . 5  |-  ( ( *  e.  ( (
MetOpen `  ( abs  o.  -  ) )  Cn  ( MetOpen `  ( abs  o. 
-  ) ) )  /\  ( ( RR 
_D  F ) `  C )  e.  CC )  ->  *  e.  ( ( ( MetOpen `  ( abs  o.  -  ) )  CnP  ( MetOpen `  ( abs  o.  -  ) ) ) `  ( ( RR  _D  F ) `
 C ) ) )
4642, 43, 45sylancr 414 . . . 4  |-  ( ph  ->  *  e.  ( ( ( MetOpen `  ( abs  o. 
-  ) )  CnP  ( MetOpen `  ( abs  o. 
-  ) ) ) `
 ( ( RR 
_D  F ) `  C ) ) )
4718, 19, 5, 21, 39, 46limccnpcntop 13811 . . 3  |-  ( ph  ->  ( * `  (
( RR  _D  F
) `  C )
)  e.  ( ( *  o.  ( x  e.  { w  e.  X  |  w #  C }  |->  ( ( ( F `  x )  -  ( F `  C ) )  / 
( x  -  C
) ) ) ) lim
CC  C ) )
48 cjf 10840 . . . . . . 7  |-  * : CC --> CC
4948a1i 9 . . . . . 6  |-  ( ph  ->  * : CC --> CC )
5049, 17cofmpt 5681 . . . . 5  |-  ( ph  ->  ( *  o.  (
x  e.  { w  e.  X  |  w #  C }  |->  ( ( ( F `  x
)  -  ( F `
 C ) )  /  ( x  -  C ) ) ) )  =  ( x  e.  { w  e.  X  |  w #  C }  |->  ( * `  ( ( ( F `
 x )  -  ( F `  C ) )  /  ( x  -  C ) ) ) ) )
513adantr 276 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  { w  e.  X  |  w #  C } )  ->  F : X --> CC )
52 elrabi 2890 . . . . . . . . . . 11  |-  ( x  e.  { w  e.  X  |  w #  C }  ->  x  e.  X
)
5352adantl 277 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  { w  e.  X  |  w #  C } )  ->  x  e.  X )
5451, 53ffvelcdmd 5648 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  { w  e.  X  |  w #  C } )  -> 
( F `  x
)  e.  CC )
553, 16ffvelcdmd 5648 . . . . . . . . . 10  |-  ( ph  ->  ( F `  C
)  e.  CC )
5655adantr 276 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  { w  e.  X  |  w #  C } )  -> 
( F `  C
)  e.  CC )
5754, 56subcld 8258 . . . . . . . 8  |-  ( (
ph  /\  x  e.  { w  e.  X  |  w #  C } )  -> 
( ( F `  x )  -  ( F `  C )
)  e.  CC )
584sselda 3155 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  X )  ->  x  e.  RR )
5952, 58sylan2 286 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  { w  e.  X  |  w #  C } )  ->  x  e.  RR )
604, 16sseldd 3156 . . . . . . . . . . 11  |-  ( ph  ->  C  e.  RR )
6160adantr 276 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  { w  e.  X  |  w #  C } )  ->  C  e.  RR )
6259, 61resubcld 8328 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  { w  e.  X  |  w #  C } )  -> 
( x  -  C
)  e.  RR )
6362recnd 7976 . . . . . . . 8  |-  ( (
ph  /\  x  e.  { w  e.  X  |  w #  C } )  -> 
( x  -  C
)  e.  CC )
6459recnd 7976 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  { w  e.  X  |  w #  C } )  ->  x  e.  CC )
6561recnd 7976 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  { w  e.  X  |  w #  C } )  ->  C  e.  CC )
66 breq1 4003 . . . . . . . . . . . 12  |-  ( w  =  x  ->  (
w #  C  <->  x #  C
) )
6766elrab 2893 . . . . . . . . . . 11  |-  ( x  e.  { w  e.  X  |  w #  C } 
<->  ( x  e.  X  /\  x #  C )
)
6867simprbi 275 . . . . . . . . . 10  |-  ( x  e.  { w  e.  X  |  w #  C }  ->  x #  C )
6968adantl 277 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  { w  e.  X  |  w #  C } )  ->  x #  C )
7064, 65, 69subap0d 8591 . . . . . . . 8  |-  ( (
ph  /\  x  e.  { w  e.  X  |  w #  C } )  -> 
( x  -  C
) #  0 )
7157, 63, 70cjdivapd 10961 . . . . . . 7  |-  ( (
ph  /\  x  e.  { w  e.  X  |  w #  C } )  -> 
( * `  (
( ( F `  x )  -  ( F `  C )
)  /  ( x  -  C ) ) )  =  ( ( * `  ( ( F `  x )  -  ( F `  C ) ) )  /  ( * `  ( x  -  C
) ) ) )
72 cjsub 10885 . . . . . . . . . 10  |-  ( ( ( F `  x
)  e.  CC  /\  ( F `  C )  e.  CC )  -> 
( * `  (
( F `  x
)  -  ( F `
 C ) ) )  =  ( ( * `  ( F `
 x ) )  -  ( * `  ( F `  C ) ) ) )
7354, 56, 72syl2anc 411 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  { w  e.  X  |  w #  C } )  -> 
( * `  (
( F `  x
)  -  ( F `
 C ) ) )  =  ( ( * `  ( F `
 x ) )  -  ( * `  ( F `  C ) ) ) )
74 fvco3 5583 . . . . . . . . . . 11  |-  ( ( F : X --> CC  /\  x  e.  X )  ->  ( ( *  o.  F ) `  x
)  =  ( * `
 ( F `  x ) ) )
753, 52, 74syl2an 289 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  { w  e.  X  |  w #  C } )  -> 
( ( *  o.  F ) `  x
)  =  ( * `
 ( F `  x ) ) )
76 fvco3 5583 . . . . . . . . . . . 12  |-  ( ( F : X --> CC  /\  C  e.  X )  ->  ( ( *  o.  F ) `  C
)  =  ( * `
 ( F `  C ) ) )
773, 16, 76syl2anc 411 . . . . . . . . . . 11  |-  ( ph  ->  ( ( *  o.  F ) `  C
)  =  ( * `
 ( F `  C ) ) )
7877adantr 276 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  { w  e.  X  |  w #  C } )  -> 
( ( *  o.  F ) `  C
)  =  ( * `
 ( F `  C ) ) )
7975, 78oveq12d 5887 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  { w  e.  X  |  w #  C } )  -> 
( ( ( *  o.  F ) `  x )  -  (
( *  o.  F
) `  C )
)  =  ( ( * `  ( F `
 x ) )  -  ( * `  ( F `  C ) ) ) )
8073, 79eqtr4d 2213 . . . . . . . 8  |-  ( (
ph  /\  x  e.  { w  e.  X  |  w #  C } )  -> 
( * `  (
( F `  x
)  -  ( F `
 C ) ) )  =  ( ( ( *  o.  F
) `  x )  -  ( ( *  o.  F ) `  C ) ) )
8162cjred 10964 . . . . . . . 8  |-  ( (
ph  /\  x  e.  { w  e.  X  |  w #  C } )  -> 
( * `  (
x  -  C ) )  =  ( x  -  C ) )
8280, 81oveq12d 5887 . . . . . . 7  |-  ( (
ph  /\  x  e.  { w  e.  X  |  w #  C } )  -> 
( ( * `  ( ( F `  x )  -  ( F `  C )
) )  /  (
* `  ( x  -  C ) ) )  =  ( ( ( ( *  o.  F
) `  x )  -  ( ( *  o.  F ) `  C ) )  / 
( x  -  C
) ) )
8371, 82eqtrd 2210 . . . . . 6  |-  ( (
ph  /\  x  e.  { w  e.  X  |  w #  C } )  -> 
( * `  (
( ( F `  x )  -  ( F `  C )
)  /  ( x  -  C ) ) )  =  ( ( ( ( *  o.  F ) `  x
)  -  ( ( *  o.  F ) `
 C ) )  /  ( x  -  C ) ) )
8483mpteq2dva 4090 . . . . 5  |-  ( ph  ->  ( x  e.  {
w  e.  X  |  w #  C }  |->  ( * `
 ( ( ( F `  x )  -  ( F `  C ) )  / 
( x  -  C
) ) ) )  =  ( x  e. 
{ w  e.  X  |  w #  C }  |->  ( ( ( ( *  o.  F ) `
 x )  -  ( ( *  o.  F ) `  C
) )  /  (
x  -  C ) ) ) )
8550, 84eqtrd 2210 . . . 4  |-  ( ph  ->  ( *  o.  (
x  e.  { w  e.  X  |  w #  C }  |->  ( ( ( F `  x
)  -  ( F `
 C ) )  /  ( x  -  C ) ) ) )  =  ( x  e.  { w  e.  X  |  w #  C }  |->  ( ( ( ( *  o.  F
) `  x )  -  ( ( *  o.  F ) `  C ) )  / 
( x  -  C
) ) ) )
8685oveq1d 5884 . . 3  |-  ( ph  ->  ( ( *  o.  ( x  e.  {
w  e.  X  |  w #  C }  |->  ( ( ( F `  x
)  -  ( F `
 C ) )  /  ( x  -  C ) ) ) ) lim CC  C )  =  ( ( x  e.  { w  e.  X  |  w #  C }  |->  ( ( ( ( *  o.  F
) `  x )  -  ( ( *  o.  F ) `  C ) )  / 
( x  -  C
) ) ) lim CC  C ) )
8747, 86eleqtrd 2256 . 2  |-  ( ph  ->  ( * `  (
( RR  _D  F
) `  C )
)  e.  ( ( x  e.  { w  e.  X  |  w #  C }  |->  ( ( ( ( *  o.  F ) `  x
)  -  ( ( *  o.  F ) `
 C ) )  /  ( x  -  C ) ) ) lim
CC  C ) )
88 eqid 2177 . . 3  |-  ( x  e.  { w  e.  X  |  w #  C }  |->  ( ( ( ( *  o.  F
) `  x )  -  ( ( *  o.  F ) `  C ) )  / 
( x  -  C
) ) )  =  ( x  e.  {
w  e.  X  |  w #  C }  |->  ( ( ( ( *  o.  F ) `  x
)  -  ( ( *  o.  F ) `
 C ) )  /  ( x  -  C ) ) )
89 fco 5377 . . . 4  |-  ( ( * : CC --> CC  /\  F : X --> CC )  ->  ( *  o.  F ) : X --> CC )
9048, 3, 89sylancr 414 . . 3  |-  ( ph  ->  ( *  o.  F
) : X --> CC )
916, 5, 88, 2, 90, 4eldvap 13818 . 2  |-  ( ph  ->  ( C ( RR 
_D  ( *  o.  F ) ) ( * `  ( ( RR  _D  F ) `
 C ) )  <-> 
( C  e.  ( ( int `  ( topGen `
 ran  (,) )
) `  X )  /\  ( * `  (
( RR  _D  F
) `  C )
)  e.  ( ( x  e.  { w  e.  X  |  w #  C }  |->  ( ( ( ( *  o.  F ) `  x
)  -  ( ( *  o.  F ) `
 C ) )  /  ( x  -  C ) ) ) lim
CC  C ) ) ) )
929, 87, 91mpbir2and 944 1  |-  ( ph  ->  C ( RR  _D  ( *  o.  F
) ) ( * `
 ( ( RR 
_D  F ) `  C ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1353    e. wcel 2148   {crab 2459    C_ wss 3129   class class class wbr 4000    |-> cmpt 4061   dom cdm 4623   ran crn 4624    o. ccom 4627   Fun wfun 5206   -->wf 5208   ` cfv 5212  (class class class)co 5869    ^pm cpm 6643   CCcc 7800   RRcr 7801    - cmin 8118   # cap 8528    / cdiv 8618   (,)cioo 9875   *ccj 10832   abscabs 10990   topGenctg 12651   MetOpencmopn 13152   intcnt 13260    Cn ccn 13352    CnP ccnp 13353   -cn->ccncf 13724   lim CC climc 13790    _D cdv 13791
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-iinf 4584  ax-cnex 7893  ax-resscn 7894  ax-1cn 7895  ax-1re 7896  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-mulrcl 7901  ax-addcom 7902  ax-mulcom 7903  ax-addass 7904  ax-mulass 7905  ax-distr 7906  ax-i2m1 7907  ax-0lt1 7908  ax-1rid 7909  ax-0id 7910  ax-rnegex 7911  ax-precex 7912  ax-cnre 7913  ax-pre-ltirr 7914  ax-pre-ltwlin 7915  ax-pre-lttrn 7916  ax-pre-apti 7917  ax-pre-ltadd 7918  ax-pre-mulgt0 7919  ax-pre-mulext 7920  ax-arch 7921  ax-caucvg 7922
This theorem depends on definitions:  df-bi 117  df-stab 831  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-tr 4099  df-id 4290  df-po 4293  df-iso 4294  df-iord 4363  df-on 4365  df-ilim 4366  df-suc 4368  df-iom 4587  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-isom 5221  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-1st 6135  df-2nd 6136  df-recs 6300  df-frec 6386  df-map 6644  df-pm 6645  df-sup 6977  df-inf 6978  df-pnf 7984  df-mnf 7985  df-xr 7986  df-ltxr 7987  df-le 7988  df-sub 8120  df-neg 8121  df-reap 8522  df-ap 8529  df-div 8619  df-inn 8909  df-2 8967  df-3 8968  df-4 8969  df-n0 9166  df-z 9243  df-uz 9518  df-q 9609  df-rp 9641  df-xneg 9759  df-xadd 9760  df-ioo 9879  df-seqfrec 10432  df-exp 10506  df-cj 10835  df-re 10836  df-im 10837  df-rsqrt 10991  df-abs 10992  df-rest 12638  df-topgen 12657  df-psmet 13154  df-xmet 13155  df-met 13156  df-bl 13157  df-mopn 13158  df-top 13163  df-topon 13176  df-bases 13208  df-ntr 13263  df-cn 13355  df-cnp 13356  df-cncf 13725  df-limced 13792  df-dvap 13793
This theorem is referenced by:  dvcj  13840
  Copyright terms: Public domain W3C validator