| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dvcjbr | Unicode version | ||
| Description: The derivative of the conjugate of a function. For the (simpler but more limited) function version, see dvcj 15029. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Mario Carneiro, 10-Feb-2015.) |
| Ref | Expression |
|---|---|
| dvcj.f |
|
| dvcj.x |
|
| dvcj.c |
|
| Ref | Expression |
|---|---|
| dvcjbr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-resscn 7988 |
. . . . 5
| |
| 2 | 1 | a1i 9 |
. . . 4
|
| 3 | dvcj.f |
. . . 4
| |
| 4 | dvcj.x |
. . . 4
| |
| 5 | eqid 2196 |
. . . . 5
| |
| 6 | 5 | tgioo2cntop 14877 |
. . . 4
|
| 7 | 2, 3, 4, 6, 5 | dvbssntrcntop 15004 |
. . 3
|
| 8 | dvcj.c |
. . 3
| |
| 9 | 7, 8 | sseldd 3185 |
. 2
|
| 10 | 4, 1 | sstrdi 3196 |
. . . . . 6
|
| 11 | 1 | a1i 9 |
. . . . . . . . 9
|
| 12 | simpl 109 |
. . . . . . . . 9
| |
| 13 | simpr 110 |
. . . . . . . . 9
| |
| 14 | 11, 12, 13 | dvbss 15005 |
. . . . . . . 8
|
| 15 | 3, 4, 14 | syl2anc 411 |
. . . . . . 7
|
| 16 | 15, 8 | sseldd 3185 |
. . . . . 6
|
| 17 | 3, 10, 16 | dvlemap 15000 |
. . . . 5
|
| 18 | 17 | fmpttd 5720 |
. . . 4
|
| 19 | ssidd 3205 |
. . . 4
| |
| 20 | 5 | cntoptopon 14852 |
. . . . 5
|
| 21 | 20 | toponrestid 14341 |
. . . 4
|
| 22 | 3 | fdmd 5417 |
. . . . . . . . . . . . 13
|
| 23 | 22 | feq2d 5398 |
. . . . . . . . . . . 12
|
| 24 | 3, 23 | mpbird 167 |
. . . . . . . . . . 11
|
| 25 | 22, 4 | eqsstrd 3220 |
. . . . . . . . . . 11
|
| 26 | cnex 8020 |
. . . . . . . . . . . 12
| |
| 27 | reex 8030 |
. . . . . . . . . . . 12
| |
| 28 | 26, 27 | elpm2 6748 |
. . . . . . . . . . 11
|
| 29 | 24, 25, 28 | sylanbrc 417 |
. . . . . . . . . 10
|
| 30 | dvfpm 15009 |
. . . . . . . . . 10
| |
| 31 | 29, 30 | syl 14 |
. . . . . . . . 9
|
| 32 | 31 | ffund 5414 |
. . . . . . . 8
|
| 33 | funfvbrb 5678 |
. . . . . . . 8
| |
| 34 | 32, 33 | syl 14 |
. . . . . . 7
|
| 35 | 8, 34 | mpbid 147 |
. . . . . 6
|
| 36 | eqid 2196 |
. . . . . . 7
| |
| 37 | 6, 5, 36, 2, 3, 4 | eldvap 15002 |
. . . . . 6
|
| 38 | 35, 37 | mpbid 147 |
. . . . 5
|
| 39 | 38 | simprd 114 |
. . . 4
|
| 40 | cjcncf 14908 |
. . . . . 6
| |
| 41 | 5 | cncfcn1cntop 14914 |
. . . . . 6
|
| 42 | 40, 41 | eleqtri 2271 |
. . . . 5
|
| 43 | 31, 8 | ffvelcdmd 5701 |
. . . . 5
|
| 44 | unicntopcntop 14862 |
. . . . . 6
| |
| 45 | 44 | cncnpi 14548 |
. . . . 5
|
| 46 | 42, 43, 45 | sylancr 414 |
. . . 4
|
| 47 | 18, 19, 5, 21, 39, 46 | limccnpcntop 14995 |
. . 3
|
| 48 | cjf 11029 |
. . . . . . 7
| |
| 49 | 48 | a1i 9 |
. . . . . 6
|
| 50 | 49, 17 | cofmpt 5734 |
. . . . 5
|
| 51 | 3 | adantr 276 |
. . . . . . . . . 10
|
| 52 | elrabi 2917 |
. . . . . . . . . . 11
| |
| 53 | 52 | adantl 277 |
. . . . . . . . . 10
|
| 54 | 51, 53 | ffvelcdmd 5701 |
. . . . . . . . 9
|
| 55 | 3, 16 | ffvelcdmd 5701 |
. . . . . . . . . 10
|
| 56 | 55 | adantr 276 |
. . . . . . . . 9
|
| 57 | 54, 56 | subcld 8354 |
. . . . . . . 8
|
| 58 | 4 | sselda 3184 |
. . . . . . . . . . 11
|
| 59 | 52, 58 | sylan2 286 |
. . . . . . . . . 10
|
| 60 | 4, 16 | sseldd 3185 |
. . . . . . . . . . 11
|
| 61 | 60 | adantr 276 |
. . . . . . . . . 10
|
| 62 | 59, 61 | resubcld 8424 |
. . . . . . . . 9
|
| 63 | 62 | recnd 8072 |
. . . . . . . 8
|
| 64 | 59 | recnd 8072 |
. . . . . . . . 9
|
| 65 | 61 | recnd 8072 |
. . . . . . . . 9
|
| 66 | breq1 4037 |
. . . . . . . . . . . 12
| |
| 67 | 66 | elrab 2920 |
. . . . . . . . . . 11
|
| 68 | 67 | simprbi 275 |
. . . . . . . . . 10
|
| 69 | 68 | adantl 277 |
. . . . . . . . 9
|
| 70 | 64, 65, 69 | subap0d 8688 |
. . . . . . . 8
|
| 71 | 57, 63, 70 | cjdivapd 11150 |
. . . . . . 7
|
| 72 | cjsub 11074 |
. . . . . . . . . 10
| |
| 73 | 54, 56, 72 | syl2anc 411 |
. . . . . . . . 9
|
| 74 | fvco3 5635 |
. . . . . . . . . . 11
| |
| 75 | 3, 52, 74 | syl2an 289 |
. . . . . . . . . 10
|
| 76 | fvco3 5635 |
. . . . . . . . . . . 12
| |
| 77 | 3, 16, 76 | syl2anc 411 |
. . . . . . . . . . 11
|
| 78 | 77 | adantr 276 |
. . . . . . . . . 10
|
| 79 | 75, 78 | oveq12d 5943 |
. . . . . . . . 9
|
| 80 | 73, 79 | eqtr4d 2232 |
. . . . . . . 8
|
| 81 | 62 | cjred 11153 |
. . . . . . . 8
|
| 82 | 80, 81 | oveq12d 5943 |
. . . . . . 7
|
| 83 | 71, 82 | eqtrd 2229 |
. . . . . 6
|
| 84 | 83 | mpteq2dva 4124 |
. . . . 5
|
| 85 | 50, 84 | eqtrd 2229 |
. . . 4
|
| 86 | 85 | oveq1d 5940 |
. . 3
|
| 87 | 47, 86 | eleqtrd 2275 |
. 2
|
| 88 | eqid 2196 |
. . 3
| |
| 89 | fco 5426 |
. . . 4
| |
| 90 | 48, 3, 89 | sylancr 414 |
. . 3
|
| 91 | 6, 5, 88, 2, 90, 4 | eldvap 15002 |
. 2
|
| 92 | 9, 87, 91 | mpbir2and 946 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-iinf 4625 ax-cnex 7987 ax-resscn 7988 ax-1cn 7989 ax-1re 7990 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-mulrcl 7995 ax-addcom 7996 ax-mulcom 7997 ax-addass 7998 ax-mulass 7999 ax-distr 8000 ax-i2m1 8001 ax-0lt1 8002 ax-1rid 8003 ax-0id 8004 ax-rnegex 8005 ax-precex 8006 ax-cnre 8007 ax-pre-ltirr 8008 ax-pre-ltwlin 8009 ax-pre-lttrn 8010 ax-pre-apti 8011 ax-pre-ltadd 8012 ax-pre-mulgt0 8013 ax-pre-mulext 8014 ax-arch 8015 ax-caucvg 8016 |
| This theorem depends on definitions: df-bi 117 df-stab 832 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-if 3563 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-tr 4133 df-id 4329 df-po 4332 df-iso 4333 df-iord 4402 df-on 4404 df-ilim 4405 df-suc 4407 df-iom 4628 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-isom 5268 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-1st 6207 df-2nd 6208 df-recs 6372 df-frec 6458 df-map 6718 df-pm 6719 df-sup 7059 df-inf 7060 df-pnf 8080 df-mnf 8081 df-xr 8082 df-ltxr 8083 df-le 8084 df-sub 8216 df-neg 8217 df-reap 8619 df-ap 8626 df-div 8717 df-inn 9008 df-2 9066 df-3 9067 df-4 9068 df-n0 9267 df-z 9344 df-uz 9619 df-q 9711 df-rp 9746 df-xneg 9864 df-xadd 9865 df-ioo 9984 df-seqfrec 10557 df-exp 10648 df-cj 11024 df-re 11025 df-im 11026 df-rsqrt 11180 df-abs 11181 df-rest 12943 df-topgen 12962 df-psmet 14175 df-xmet 14176 df-met 14177 df-bl 14178 df-mopn 14179 df-top 14318 df-topon 14331 df-bases 14363 df-ntr 14416 df-cn 14508 df-cnp 14509 df-cncf 14891 df-limced 14976 df-dvap 14977 |
| This theorem is referenced by: dvcj 15029 |
| Copyright terms: Public domain | W3C validator |