ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ffun Unicode version

Theorem ffun 5369
Description: A mapping is a function. (Contributed by NM, 3-Aug-1994.)
Assertion
Ref Expression
ffun  |-  ( F : A --> B  ->  Fun  F )

Proof of Theorem ffun
StepHypRef Expression
1 ffn 5366 . 2  |-  ( F : A --> B  ->  F  Fn  A )
2 fnfun 5314 . 2  |-  ( F  Fn  A  ->  Fun  F )
31, 2syl 14 1  |-  ( F : A --> B  ->  Fun  F )
Colors of variables: wff set class
Syntax hints:    -> wi 4   Fun wfun 5211    Fn wfn 5212   -->wf 5213
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106
This theorem depends on definitions:  df-bi 117  df-fn 5220  df-f 5221
This theorem is referenced by:  ffund  5370  funssxp  5386  f00  5408  fofun  5440  fun11iun  5483  fimacnv  5646  dff3im  5662  resflem  5681  fmptco  5683  fliftf  5800  smores2  6295  pmfun  6668  elmapfun  6672  pmresg  6676  ac6sfi  6898  casef  7087  omp1eomlem  7093  ctm  7108  exmidfodomrlemim  7200  nn0supp  9228  frecuzrdg0  10413  frecuzrdgsuc  10414  frecuzrdgdomlem  10417  frecuzrdg0t  10422  frecuzrdgsuctlem  10423  climdm  11303  sum0  11396  isumz  11397  fsumsersdc  11403  isumclim  11429  zprodap0  11589  iscnp3  13706  cnpnei  13722  cnclima  13726  cnrest2  13739  hmeores  13818  metcnp  14015  qtopbasss  14024  tgqioo  14050  dvaddxx  14170  dvmulxx  14171  dviaddf  14172  dvimulf  14173  dvef  14191  pilem3  14207
  Copyright terms: Public domain W3C validator