![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ffun | Unicode version |
Description: A mapping is a function. (Contributed by NM, 3-Aug-1994.) |
Ref | Expression |
---|---|
ffun |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ffn 5403 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | fnfun 5351 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | syl 14 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
This theorem depends on definitions: df-bi 117 df-fn 5257 df-f 5258 |
This theorem is referenced by: ffund 5407 funssxp 5423 f00 5445 fofun 5477 fun11iun 5521 fimacnv 5687 dff3im 5703 resflem 5722 fmptco 5724 fliftf 5842 smores2 6347 pmfun 6722 elmapfun 6726 pmresg 6730 ac6sfi 6954 casef 7147 omp1eomlem 7153 ctm 7168 exmidfodomrlemim 7261 nn0supp 9292 frecuzrdg0 10484 frecuzrdgsuc 10485 frecuzrdgdomlem 10488 frecuzrdg0t 10493 frecuzrdgsuctlem 10494 climdm 11438 sum0 11531 isumz 11532 fsumsersdc 11538 isumclim 11564 zprodap0 11724 psrbaglesuppg 14158 iscnp3 14371 cnpnei 14387 cnclima 14391 cnrest2 14404 hmeores 14483 metcnp 14680 qtopbasss 14689 tgqioo 14715 dvaddxx 14852 dvmulxx 14853 dviaddf 14854 dvimulf 14855 dvef 14873 pilem3 14918 |
Copyright terms: Public domain | W3C validator |