| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ffun | Unicode version | ||
| Description: A mapping is a function. (Contributed by NM, 3-Aug-1994.) |
| Ref | Expression |
|---|---|
| ffun |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ffn 5410 |
. 2
| |
| 2 | fnfun 5356 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
| This theorem depends on definitions: df-bi 117 df-fn 5262 df-f 5263 |
| This theorem is referenced by: ffund 5414 funssxp 5430 f00 5452 fofun 5484 fun11iun 5528 fimacnv 5694 dff3im 5710 resflem 5729 fmptco 5731 fliftf 5849 smores2 6361 pmfun 6736 elmapfun 6740 pmresg 6744 ac6sfi 6968 casef 7163 omp1eomlem 7169 ctm 7184 exmidfodomrlemim 7280 nn0supp 9318 frecuzrdg0 10522 frecuzrdgsuc 10523 frecuzrdgdomlem 10526 frecuzrdg0t 10531 frecuzrdgsuctlem 10532 climdm 11477 sum0 11570 isumz 11571 fsumsersdc 11577 isumclim 11603 zprodap0 11763 psrbaglesuppg 14302 iscnp3 14523 cnpnei 14539 cnclima 14543 cnrest2 14556 hmeores 14635 metcnp 14832 qtopbasss 14841 tgqioo 14875 dvaddxx 15023 dvmulxx 15024 dviaddf 15025 dvimulf 15026 dvef 15047 pilem3 15103 |
| Copyright terms: Public domain | W3C validator |