| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ffun | Unicode version | ||
| Description: A mapping is a function. (Contributed by NM, 3-Aug-1994.) |
| Ref | Expression |
|---|---|
| ffun |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ffn 5440 |
. 2
| |
| 2 | fnfun 5385 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
| This theorem depends on definitions: df-bi 117 df-fn 5288 df-f 5289 |
| This theorem is referenced by: ffund 5444 funssxp 5460 f00 5484 fofun 5516 fun11iun 5560 fimacnv 5727 dff3im 5743 resflem 5762 fmptco 5764 fliftf 5886 smores2 6398 pmfun 6773 elmapfun 6777 pmresg 6781 ac6sfi 7016 casef 7211 omp1eomlem 7217 ctm 7232 exmidfodomrlemim 7335 nn0supp 9377 frecuzrdg0 10590 frecuzrdgsuc 10591 frecuzrdgdomlem 10594 frecuzrdg0t 10599 frecuzrdgsuctlem 10600 climdm 11691 sum0 11784 isumz 11785 fsumsersdc 11791 isumclim 11817 zprodap0 11977 psrbaglesuppg 14519 iscnp3 14760 cnpnei 14776 cnclima 14780 cnrest2 14793 hmeores 14872 metcnp 15069 qtopbasss 15078 tgqioo 15112 dvaddxx 15260 dvmulxx 15261 dviaddf 15262 dvimulf 15263 dvef 15284 pilem3 15340 |
| Copyright terms: Public domain | W3C validator |