| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ffun | Unicode version | ||
| Description: A mapping is a function. (Contributed by NM, 3-Aug-1994.) |
| Ref | Expression |
|---|---|
| ffun |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ffn 5407 |
. 2
| |
| 2 | fnfun 5355 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
| This theorem depends on definitions: df-bi 117 df-fn 5261 df-f 5262 |
| This theorem is referenced by: ffund 5411 funssxp 5427 f00 5449 fofun 5481 fun11iun 5525 fimacnv 5691 dff3im 5707 resflem 5726 fmptco 5728 fliftf 5846 smores2 6352 pmfun 6727 elmapfun 6731 pmresg 6735 ac6sfi 6959 casef 7154 omp1eomlem 7160 ctm 7175 exmidfodomrlemim 7268 nn0supp 9301 frecuzrdg0 10505 frecuzrdgsuc 10506 frecuzrdgdomlem 10509 frecuzrdg0t 10514 frecuzrdgsuctlem 10515 climdm 11460 sum0 11553 isumz 11554 fsumsersdc 11560 isumclim 11586 zprodap0 11746 psrbaglesuppg 14226 iscnp3 14439 cnpnei 14455 cnclima 14459 cnrest2 14472 hmeores 14551 metcnp 14748 qtopbasss 14757 tgqioo 14791 dvaddxx 14939 dvmulxx 14940 dviaddf 14941 dvimulf 14942 dvef 14963 pilem3 15019 |
| Copyright terms: Public domain | W3C validator |