| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ffun | Unicode version | ||
| Description: A mapping is a function. (Contributed by NM, 3-Aug-1994.) |
| Ref | Expression |
|---|---|
| ffun |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ffn 5424 |
. 2
| |
| 2 | fnfun 5370 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
| This theorem depends on definitions: df-bi 117 df-fn 5273 df-f 5274 |
| This theorem is referenced by: ffund 5428 funssxp 5444 f00 5466 fofun 5498 fun11iun 5542 fimacnv 5708 dff3im 5724 resflem 5743 fmptco 5745 fliftf 5867 smores2 6379 pmfun 6754 elmapfun 6758 pmresg 6762 ac6sfi 6994 casef 7189 omp1eomlem 7195 ctm 7210 exmidfodomrlemim 7308 nn0supp 9346 frecuzrdg0 10556 frecuzrdgsuc 10557 frecuzrdgdomlem 10560 frecuzrdg0t 10565 frecuzrdgsuctlem 10566 climdm 11577 sum0 11670 isumz 11671 fsumsersdc 11677 isumclim 11703 zprodap0 11863 psrbaglesuppg 14405 iscnp3 14646 cnpnei 14662 cnclima 14666 cnrest2 14679 hmeores 14758 metcnp 14955 qtopbasss 14964 tgqioo 14998 dvaddxx 15146 dvmulxx 15147 dviaddf 15148 dvimulf 15149 dvef 15170 pilem3 15226 |
| Copyright terms: Public domain | W3C validator |