| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ffun | Unicode version | ||
| Description: A mapping is a function. (Contributed by NM, 3-Aug-1994.) |
| Ref | Expression |
|---|---|
| ffun |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ffn 5410 |
. 2
| |
| 2 | fnfun 5356 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
| This theorem depends on definitions: df-bi 117 df-fn 5262 df-f 5263 |
| This theorem is referenced by: ffund 5414 funssxp 5430 f00 5452 fofun 5484 fun11iun 5528 fimacnv 5694 dff3im 5710 resflem 5729 fmptco 5731 fliftf 5849 smores2 6361 pmfun 6736 elmapfun 6740 pmresg 6744 ac6sfi 6968 casef 7163 omp1eomlem 7169 ctm 7184 exmidfodomrlemim 7282 nn0supp 9320 frecuzrdg0 10524 frecuzrdgsuc 10525 frecuzrdgdomlem 10528 frecuzrdg0t 10533 frecuzrdgsuctlem 10534 climdm 11479 sum0 11572 isumz 11573 fsumsersdc 11579 isumclim 11605 zprodap0 11765 psrbaglesuppg 14306 iscnp3 14547 cnpnei 14563 cnclima 14567 cnrest2 14580 hmeores 14659 metcnp 14856 qtopbasss 14865 tgqioo 14899 dvaddxx 15047 dvmulxx 15048 dviaddf 15049 dvimulf 15050 dvef 15071 pilem3 15127 |
| Copyright terms: Public domain | W3C validator |