![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ffun | Unicode version |
Description: A mapping is a function. (Contributed by NM, 3-Aug-1994.) |
Ref | Expression |
---|---|
ffun |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ffn 5404 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | fnfun 5352 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | syl 14 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
This theorem depends on definitions: df-bi 117 df-fn 5258 df-f 5259 |
This theorem is referenced by: ffund 5408 funssxp 5424 f00 5446 fofun 5478 fun11iun 5522 fimacnv 5688 dff3im 5704 resflem 5723 fmptco 5725 fliftf 5843 smores2 6349 pmfun 6724 elmapfun 6728 pmresg 6732 ac6sfi 6956 casef 7149 omp1eomlem 7155 ctm 7170 exmidfodomrlemim 7263 nn0supp 9295 frecuzrdg0 10487 frecuzrdgsuc 10488 frecuzrdgdomlem 10491 frecuzrdg0t 10496 frecuzrdgsuctlem 10497 climdm 11441 sum0 11534 isumz 11535 fsumsersdc 11541 isumclim 11567 zprodap0 11727 psrbaglesuppg 14169 iscnp3 14382 cnpnei 14398 cnclima 14402 cnrest2 14415 hmeores 14494 metcnp 14691 qtopbasss 14700 tgqioo 14734 dvaddxx 14882 dvmulxx 14883 dviaddf 14884 dvimulf 14885 dvef 14906 pilem3 14959 |
Copyright terms: Public domain | W3C validator |