| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ffun | Unicode version | ||
| Description: A mapping is a function. (Contributed by NM, 3-Aug-1994.) |
| Ref | Expression |
|---|---|
| ffun |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ffn 5472 |
. 2
| |
| 2 | fnfun 5417 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
| This theorem depends on definitions: df-bi 117 df-fn 5320 df-f 5321 |
| This theorem is referenced by: ffund 5476 funssxp 5492 f00 5516 fofun 5548 fun11iun 5592 fimacnv 5763 dff3im 5779 resflem 5798 fmptco 5800 fliftf 5922 smores2 6438 pmfun 6813 elmapfun 6817 pmresg 6821 ac6sfi 7056 casef 7251 omp1eomlem 7257 ctm 7272 exmidfodomrlemim 7375 nn0supp 9417 frecuzrdg0 10630 frecuzrdgsuc 10631 frecuzrdgdomlem 10634 frecuzrdg0t 10639 frecuzrdgsuctlem 10640 climdm 11801 sum0 11894 isumz 11895 fsumsersdc 11901 isumclim 11927 zprodap0 12087 psrbaglesuppg 14630 iscnp3 14871 cnpnei 14887 cnclima 14891 cnrest2 14904 hmeores 14983 metcnp 15180 qtopbasss 15189 tgqioo 15223 dvaddxx 15371 dvmulxx 15372 dviaddf 15373 dvimulf 15374 dvef 15395 pilem3 15451 |
| Copyright terms: Public domain | W3C validator |