ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvcj Unicode version

Theorem dvcj 13428
Description: The derivative of the conjugate of a function. For the (more general) relation version, see dvcjbr 13427. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Mario Carneiro, 10-Feb-2015.)
Assertion
Ref Expression
dvcj  |-  ( ( F : X --> CC  /\  X  C_  RR )  -> 
( RR  _D  (
*  o.  F ) )  =  ( *  o.  ( RR  _D  F ) ) )

Proof of Theorem dvcj
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpll 524 . . . . 5  |-  ( ( ( F : X --> CC  /\  X  C_  RR )  /\  x  e.  dom  ( RR  _D  F
) )  ->  F : X --> CC )
2 simplr 525 . . . . 5  |-  ( ( ( F : X --> CC  /\  X  C_  RR )  /\  x  e.  dom  ( RR  _D  F
) )  ->  X  C_  RR )
3 simpr 109 . . . . 5  |-  ( ( ( F : X --> CC  /\  X  C_  RR )  /\  x  e.  dom  ( RR  _D  F
) )  ->  x  e.  dom  ( RR  _D  F ) )
41, 2, 3dvcjbr 13427 . . . 4  |-  ( ( ( F : X --> CC  /\  X  C_  RR )  /\  x  e.  dom  ( RR  _D  F
) )  ->  x
( RR  _D  (
*  o.  F ) ) ( * `  ( ( RR  _D  F ) `  x
) ) )
5 cjf 10800 . . . . . . . . . . . 12  |-  * : CC --> CC
6 fco 5361 . . . . . . . . . . . 12  |-  ( ( * : CC --> CC  /\  F : X --> CC )  ->  ( *  o.  F ) : X --> CC )
75, 6mpan 422 . . . . . . . . . . 11  |-  ( F : X --> CC  ->  ( *  o.  F ) : X --> CC )
87adantr 274 . . . . . . . . . 10  |-  ( ( F : X --> CC  /\  X  C_  RR )  -> 
( *  o.  F
) : X --> CC )
97fdmd 5352 . . . . . . . . . . . 12  |-  ( F : X --> CC  ->  dom  ( *  o.  F
)  =  X )
109adantr 274 . . . . . . . . . . 11  |-  ( ( F : X --> CC  /\  X  C_  RR )  ->  dom  ( *  o.  F
)  =  X )
1110feq2d 5333 . . . . . . . . . 10  |-  ( ( F : X --> CC  /\  X  C_  RR )  -> 
( ( *  o.  F ) : dom  ( *  o.  F
) --> CC  <->  ( *  o.  F ) : X --> CC ) )
128, 11mpbird 166 . . . . . . . . 9  |-  ( ( F : X --> CC  /\  X  C_  RR )  -> 
( *  o.  F
) : dom  (
*  o.  F ) --> CC )
13 simpr 109 . . . . . . . . . 10  |-  ( ( F : X --> CC  /\  X  C_  RR )  ->  X  C_  RR )
1410, 13eqsstrd 3183 . . . . . . . . 9  |-  ( ( F : X --> CC  /\  X  C_  RR )  ->  dom  ( *  o.  F
)  C_  RR )
15 cnex 7887 . . . . . . . . . 10  |-  CC  e.  _V
16 reex 7897 . . . . . . . . . 10  |-  RR  e.  _V
1715, 16elpm2 6655 . . . . . . . . 9  |-  ( ( *  o.  F )  e.  ( CC  ^pm  RR )  <->  ( ( *  o.  F ) : dom  ( *  o.  F ) --> CC  /\  dom  ( *  o.  F
)  C_  RR )
)
1812, 14, 17sylanbrc 415 . . . . . . . 8  |-  ( ( F : X --> CC  /\  X  C_  RR )  -> 
( *  o.  F
)  e.  ( CC 
^pm  RR ) )
19 dvfpm 13413 . . . . . . . 8  |-  ( ( *  o.  F )  e.  ( CC  ^pm  RR )  ->  ( RR  _D  ( *  o.  F
) ) : dom  ( RR  _D  (
*  o.  F ) ) --> CC )
2018, 19syl 14 . . . . . . 7  |-  ( ( F : X --> CC  /\  X  C_  RR )  -> 
( RR  _D  (
*  o.  F ) ) : dom  ( RR  _D  ( *  o.  F ) ) --> CC )
2120ffund 5349 . . . . . 6  |-  ( ( F : X --> CC  /\  X  C_  RR )  ->  Fun  ( RR  _D  (
*  o.  F ) ) )
22 funbrfv 5533 . . . . . 6  |-  ( Fun  ( RR  _D  (
*  o.  F ) )  ->  ( x
( RR  _D  (
*  o.  F ) ) ( * `  ( ( RR  _D  F ) `  x
) )  ->  (
( RR  _D  (
*  o.  F ) ) `  x )  =  ( * `  ( ( RR  _D  F ) `  x
) ) ) )
2321, 22syl 14 . . . . 5  |-  ( ( F : X --> CC  /\  X  C_  RR )  -> 
( x ( RR 
_D  ( *  o.  F ) ) ( * `  ( ( RR  _D  F ) `
 x ) )  ->  ( ( RR 
_D  ( *  o.  F ) ) `  x )  =  ( * `  ( ( RR  _D  F ) `
 x ) ) ) )
2423adantr 274 . . . 4  |-  ( ( ( F : X --> CC  /\  X  C_  RR )  /\  x  e.  dom  ( RR  _D  F
) )  ->  (
x ( RR  _D  ( *  o.  F
) ) ( * `
 ( ( RR 
_D  F ) `  x ) )  -> 
( ( RR  _D  ( *  o.  F
) ) `  x
)  =  ( * `
 ( ( RR 
_D  F ) `  x ) ) ) )
254, 24mpd 13 . . 3  |-  ( ( ( F : X --> CC  /\  X  C_  RR )  /\  x  e.  dom  ( RR  _D  F
) )  ->  (
( RR  _D  (
*  o.  F ) ) `  x )  =  ( * `  ( ( RR  _D  F ) `  x
) ) )
2625mpteq2dva 4077 . 2  |-  ( ( F : X --> CC  /\  X  C_  RR )  -> 
( x  e.  dom  ( RR  _D  F
)  |->  ( ( RR 
_D  ( *  o.  F ) ) `  x ) )  =  ( x  e.  dom  ( RR  _D  F
)  |->  ( * `  ( ( RR  _D  F ) `  x
) ) ) )
27 vex 2733 . . . . . . . . . 10  |-  x  e. 
_V
2820ffvelrnda 5629 . . . . . . . . . . 11  |-  ( ( ( F : X --> CC  /\  X  C_  RR )  /\  x  e.  dom  ( RR  _D  (
*  o.  F ) ) )  ->  (
( RR  _D  (
*  o.  F ) ) `  x )  e.  CC )
2928cjcld 10893 . . . . . . . . . 10  |-  ( ( ( F : X --> CC  /\  X  C_  RR )  /\  x  e.  dom  ( RR  _D  (
*  o.  F ) ) )  ->  (
* `  ( ( RR  _D  ( *  o.  F ) ) `  x ) )  e.  CC )
307ad2antrr 485 . . . . . . . . . . 11  |-  ( ( ( F : X --> CC  /\  X  C_  RR )  /\  x  e.  dom  ( RR  _D  (
*  o.  F ) ) )  ->  (
*  o.  F ) : X --> CC )
31 simplr 525 . . . . . . . . . . 11  |-  ( ( ( F : X --> CC  /\  X  C_  RR )  /\  x  e.  dom  ( RR  _D  (
*  o.  F ) ) )  ->  X  C_  RR )
32 simpr 109 . . . . . . . . . . 11  |-  ( ( ( F : X --> CC  /\  X  C_  RR )  /\  x  e.  dom  ( RR  _D  (
*  o.  F ) ) )  ->  x  e.  dom  ( RR  _D  ( *  o.  F
) ) )
3330, 31, 32dvcjbr 13427 . . . . . . . . . 10  |-  ( ( ( F : X --> CC  /\  X  C_  RR )  /\  x  e.  dom  ( RR  _D  (
*  o.  F ) ) )  ->  x
( RR  _D  (
*  o.  ( *  o.  F ) ) ) ( * `  ( ( RR  _D  ( *  o.  F
) ) `  x
) ) )
34 breldmg 4815 . . . . . . . . . 10  |-  ( ( x  e.  _V  /\  ( * `  (
( RR  _D  (
*  o.  F ) ) `  x ) )  e.  CC  /\  x ( RR  _D  ( *  o.  (
*  o.  F ) ) ) ( * `
 ( ( RR 
_D  ( *  o.  F ) ) `  x ) ) )  ->  x  e.  dom  ( RR  _D  (
*  o.  ( *  o.  F ) ) ) )
3527, 29, 33, 34mp3an2i 1337 . . . . . . . . 9  |-  ( ( ( F : X --> CC  /\  X  C_  RR )  /\  x  e.  dom  ( RR  _D  (
*  o.  F ) ) )  ->  x  e.  dom  ( RR  _D  ( *  o.  (
*  o.  F ) ) ) )
3635ex 114 . . . . . . . 8  |-  ( ( F : X --> CC  /\  X  C_  RR )  -> 
( x  e.  dom  ( RR  _D  (
*  o.  F ) )  ->  x  e.  dom  ( RR  _D  (
*  o.  ( *  o.  F ) ) ) ) )
3736ssrdv 3153 . . . . . . 7  |-  ( ( F : X --> CC  /\  X  C_  RR )  ->  dom  ( RR  _D  (
*  o.  F ) )  C_  dom  ( RR 
_D  ( *  o.  ( *  o.  F
) ) ) )
38 ffvelrn 5627 . . . . . . . . . . . . 13  |-  ( ( F : X --> CC  /\  x  e.  X )  ->  ( F `  x
)  e.  CC )
3938adantlr 474 . . . . . . . . . . . 12  |-  ( ( ( F : X --> CC  /\  X  C_  RR )  /\  x  e.  X
)  ->  ( F `  x )  e.  CC )
4039cjcjd 10896 . . . . . . . . . . 11  |-  ( ( ( F : X --> CC  /\  X  C_  RR )  /\  x  e.  X
)  ->  ( * `  ( * `  ( F `  x )
) )  =  ( F `  x ) )
4140mpteq2dva 4077 . . . . . . . . . 10  |-  ( ( F : X --> CC  /\  X  C_  RR )  -> 
( x  e.  X  |->  ( * `  (
* `  ( F `  x ) ) ) )  =  ( x  e.  X  |->  ( F `
 x ) ) )
4239cjcld 10893 . . . . . . . . . . 11  |-  ( ( ( F : X --> CC  /\  X  C_  RR )  /\  x  e.  X
)  ->  ( * `  ( F `  x
) )  e.  CC )
43 simpl 108 . . . . . . . . . . . . 13  |-  ( ( F : X --> CC  /\  X  C_  RR )  ->  F : X --> CC )
4443feqmptd 5547 . . . . . . . . . . . 12  |-  ( ( F : X --> CC  /\  X  C_  RR )  ->  F  =  ( x  e.  X  |->  ( F `
 x ) ) )
455a1i 9 . . . . . . . . . . . . 13  |-  ( ( F : X --> CC  /\  X  C_  RR )  ->  * : CC --> CC )
4645feqmptd 5547 . . . . . . . . . . . 12  |-  ( ( F : X --> CC  /\  X  C_  RR )  ->  *  =  ( y  e.  CC  |->  ( * `  y ) ) )
47 fveq2 5494 . . . . . . . . . . . 12  |-  ( y  =  ( F `  x )  ->  (
* `  y )  =  ( * `  ( F `  x ) ) )
4839, 44, 46, 47fmptco 5660 . . . . . . . . . . 11  |-  ( ( F : X --> CC  /\  X  C_  RR )  -> 
( *  o.  F
)  =  ( x  e.  X  |->  ( * `
 ( F `  x ) ) ) )
49 fveq2 5494 . . . . . . . . . . 11  |-  ( y  =  ( * `  ( F `  x ) )  ->  ( * `  y )  =  ( * `  ( * `
 ( F `  x ) ) ) )
5042, 48, 46, 49fmptco 5660 . . . . . . . . . 10  |-  ( ( F : X --> CC  /\  X  C_  RR )  -> 
( *  o.  (
*  o.  F ) )  =  ( x  e.  X  |->  ( * `
 ( * `  ( F `  x ) ) ) ) )
5141, 50, 443eqtr4d 2213 . . . . . . . . 9  |-  ( ( F : X --> CC  /\  X  C_  RR )  -> 
( *  o.  (
*  o.  F ) )  =  F )
5251oveq2d 5867 . . . . . . . 8  |-  ( ( F : X --> CC  /\  X  C_  RR )  -> 
( RR  _D  (
*  o.  ( *  o.  F ) ) )  =  ( RR 
_D  F ) )
5352dmeqd 4811 . . . . . . 7  |-  ( ( F : X --> CC  /\  X  C_  RR )  ->  dom  ( RR  _D  (
*  o.  ( *  o.  F ) ) )  =  dom  ( RR  _D  F ) )
5437, 53sseqtrd 3185 . . . . . 6  |-  ( ( F : X --> CC  /\  X  C_  RR )  ->  dom  ( RR  _D  (
*  o.  F ) )  C_  dom  ( RR 
_D  F ) )
55 ffdm 5366 . . . . . . . . . . . . 13  |-  ( F : X --> CC  ->  ( F : dom  F --> CC  /\  dom  F  C_  X ) )
5655simpld 111 . . . . . . . . . . . 12  |-  ( F : X --> CC  ->  F : dom  F --> CC )
5756adantr 274 . . . . . . . . . . 11  |-  ( ( F : X --> CC  /\  X  C_  RR )  ->  F : dom  F --> CC )
58 fdm 5351 . . . . . . . . . . . . 13  |-  ( F : X --> CC  ->  dom 
F  =  X )
5958adantr 274 . . . . . . . . . . . 12  |-  ( ( F : X --> CC  /\  X  C_  RR )  ->  dom  F  =  X )
6059, 13eqsstrd 3183 . . . . . . . . . . 11  |-  ( ( F : X --> CC  /\  X  C_  RR )  ->  dom  F  C_  RR )
6115, 16elpm2 6655 . . . . . . . . . . 11  |-  ( F  e.  ( CC  ^pm  RR )  <->  ( F : dom  F --> CC  /\  dom  F 
C_  RR ) )
6257, 60, 61sylanbrc 415 . . . . . . . . . 10  |-  ( ( F : X --> CC  /\  X  C_  RR )  ->  F  e.  ( CC  ^pm 
RR ) )
63 dvfpm 13413 . . . . . . . . . 10  |-  ( F  e.  ( CC  ^pm  RR )  ->  ( RR  _D  F ) : dom  ( RR  _D  F
) --> CC )
6462, 63syl 14 . . . . . . . . 9  |-  ( ( F : X --> CC  /\  X  C_  RR )  -> 
( RR  _D  F
) : dom  ( RR  _D  F ) --> CC )
6564ffvelrnda 5629 . . . . . . . 8  |-  ( ( ( F : X --> CC  /\  X  C_  RR )  /\  x  e.  dom  ( RR  _D  F
) )  ->  (
( RR  _D  F
) `  x )  e.  CC )
6665cjcld 10893 . . . . . . 7  |-  ( ( ( F : X --> CC  /\  X  C_  RR )  /\  x  e.  dom  ( RR  _D  F
) )  ->  (
* `  ( ( RR  _D  F ) `  x ) )  e.  CC )
67 breldmg 4815 . . . . . . 7  |-  ( ( x  e.  _V  /\  ( * `  (
( RR  _D  F
) `  x )
)  e.  CC  /\  x ( RR  _D  ( *  o.  F
) ) ( * `
 ( ( RR 
_D  F ) `  x ) ) )  ->  x  e.  dom  ( RR  _D  (
*  o.  F ) ) )
6827, 66, 4, 67mp3an2i 1337 . . . . . 6  |-  ( ( ( F : X --> CC  /\  X  C_  RR )  /\  x  e.  dom  ( RR  _D  F
) )  ->  x  e.  dom  ( RR  _D  ( *  o.  F
) ) )
6954, 68eqelssd 3166 . . . . 5  |-  ( ( F : X --> CC  /\  X  C_  RR )  ->  dom  ( RR  _D  (
*  o.  F ) )  =  dom  ( RR  _D  F ) )
7069feq2d 5333 . . . 4  |-  ( ( F : X --> CC  /\  X  C_  RR )  -> 
( ( RR  _D  ( *  o.  F
) ) : dom  ( RR  _D  (
*  o.  F ) ) --> CC  <->  ( RR  _D  ( *  o.  F
) ) : dom  ( RR  _D  F
) --> CC ) )
7120, 70mpbid 146 . . 3  |-  ( ( F : X --> CC  /\  X  C_  RR )  -> 
( RR  _D  (
*  o.  F ) ) : dom  ( RR  _D  F ) --> CC )
7271feqmptd 5547 . 2  |-  ( ( F : X --> CC  /\  X  C_  RR )  -> 
( RR  _D  (
*  o.  F ) )  =  ( x  e.  dom  ( RR 
_D  F )  |->  ( ( RR  _D  (
*  o.  F ) ) `  x ) ) )
7364feqmptd 5547 . . 3  |-  ( ( F : X --> CC  /\  X  C_  RR )  -> 
( RR  _D  F
)  =  ( x  e.  dom  ( RR 
_D  F )  |->  ( ( RR  _D  F
) `  x )
) )
74 fveq2 5494 . . 3  |-  ( y  =  ( ( RR 
_D  F ) `  x )  ->  (
* `  y )  =  ( * `  ( ( RR  _D  F ) `  x
) ) )
7565, 73, 46, 74fmptco 5660 . 2  |-  ( ( F : X --> CC  /\  X  C_  RR )  -> 
( *  o.  ( RR  _D  F ) )  =  ( x  e. 
dom  ( RR  _D  F )  |->  ( * `
 ( ( RR 
_D  F ) `  x ) ) ) )
7626, 72, 753eqtr4d 2213 1  |-  ( ( F : X --> CC  /\  X  C_  RR )  -> 
( RR  _D  (
*  o.  F ) )  =  ( *  o.  ( RR  _D  F ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1348    e. wcel 2141   _Vcvv 2730    C_ wss 3121   class class class wbr 3987    |-> cmpt 4048   dom cdm 4609    o. ccom 4613   Fun wfun 5190   -->wf 5192   ` cfv 5196  (class class class)co 5851    ^pm cpm 6624   CCcc 7761   RRcr 7762   *ccj 10792    _D cdv 13379
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4102  ax-sep 4105  ax-nul 4113  ax-pow 4158  ax-pr 4192  ax-un 4416  ax-setind 4519  ax-iinf 4570  ax-cnex 7854  ax-resscn 7855  ax-1cn 7856  ax-1re 7857  ax-icn 7858  ax-addcl 7859  ax-addrcl 7860  ax-mulcl 7861  ax-mulrcl 7862  ax-addcom 7863  ax-mulcom 7864  ax-addass 7865  ax-mulass 7866  ax-distr 7867  ax-i2m1 7868  ax-0lt1 7869  ax-1rid 7870  ax-0id 7871  ax-rnegex 7872  ax-precex 7873  ax-cnre 7874  ax-pre-ltirr 7875  ax-pre-ltwlin 7876  ax-pre-lttrn 7877  ax-pre-apti 7878  ax-pre-ltadd 7879  ax-pre-mulgt0 7880  ax-pre-mulext 7881  ax-arch 7882  ax-caucvg 7883
This theorem depends on definitions:  df-bi 116  df-stab 826  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3526  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3795  df-int 3830  df-iun 3873  df-br 3988  df-opab 4049  df-mpt 4050  df-tr 4086  df-id 4276  df-po 4279  df-iso 4280  df-iord 4349  df-on 4351  df-ilim 4352  df-suc 4354  df-iom 4573  df-xp 4615  df-rel 4616  df-cnv 4617  df-co 4618  df-dm 4619  df-rn 4620  df-res 4621  df-ima 4622  df-iota 5158  df-fun 5198  df-fn 5199  df-f 5200  df-f1 5201  df-fo 5202  df-f1o 5203  df-fv 5204  df-isom 5205  df-riota 5807  df-ov 5854  df-oprab 5855  df-mpo 5856  df-1st 6117  df-2nd 6118  df-recs 6282  df-frec 6368  df-map 6625  df-pm 6626  df-sup 6958  df-inf 6959  df-pnf 7945  df-mnf 7946  df-xr 7947  df-ltxr 7948  df-le 7949  df-sub 8081  df-neg 8082  df-reap 8483  df-ap 8490  df-div 8579  df-inn 8868  df-2 8926  df-3 8927  df-4 8928  df-n0 9125  df-z 9202  df-uz 9477  df-q 9568  df-rp 9600  df-xneg 9718  df-xadd 9719  df-ioo 9838  df-seqfrec 10391  df-exp 10465  df-cj 10795  df-re 10796  df-im 10797  df-rsqrt 10951  df-abs 10952  df-rest 12570  df-topgen 12589  df-psmet 12742  df-xmet 12743  df-met 12744  df-bl 12745  df-mopn 12746  df-top 12751  df-topon 12764  df-bases 12796  df-ntr 12851  df-cn 12943  df-cnp 12944  df-cncf 13313  df-limced 13380  df-dvap 13381
This theorem is referenced by:  dvfre  13429  dvmptcjx  13441
  Copyright terms: Public domain W3C validator