| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dvcj | Unicode version | ||
| Description: The derivative of the conjugate of a function. For the (more general) relation version, see dvcjbr 15295. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Mario Carneiro, 10-Feb-2015.) |
| Ref | Expression |
|---|---|
| dvcj |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpll 527 |
. . . . 5
| |
| 2 | simplr 528 |
. . . . 5
| |
| 3 | simpr 110 |
. . . . 5
| |
| 4 | 1, 2, 3 | dvcjbr 15295 |
. . . 4
|
| 5 | cjf 11273 |
. . . . . . . . . . . 12
| |
| 6 | fco 5461 |
. . . . . . . . . . . 12
| |
| 7 | 5, 6 | mpan 424 |
. . . . . . . . . . 11
|
| 8 | 7 | adantr 276 |
. . . . . . . . . 10
|
| 9 | 7 | fdmd 5452 |
. . . . . . . . . . . 12
|
| 10 | 9 | adantr 276 |
. . . . . . . . . . 11
|
| 11 | 10 | feq2d 5433 |
. . . . . . . . . 10
|
| 12 | 8, 11 | mpbird 167 |
. . . . . . . . 9
|
| 13 | simpr 110 |
. . . . . . . . . 10
| |
| 14 | 10, 13 | eqsstrd 3237 |
. . . . . . . . 9
|
| 15 | cnex 8084 |
. . . . . . . . . 10
| |
| 16 | reex 8094 |
. . . . . . . . . 10
| |
| 17 | 15, 16 | elpm2 6790 |
. . . . . . . . 9
|
| 18 | 12, 14, 17 | sylanbrc 417 |
. . . . . . . 8
|
| 19 | dvfpm 15276 |
. . . . . . . 8
| |
| 20 | 18, 19 | syl 14 |
. . . . . . 7
|
| 21 | 20 | ffund 5449 |
. . . . . 6
|
| 22 | funbrfv 5640 |
. . . . . 6
| |
| 23 | 21, 22 | syl 14 |
. . . . 5
|
| 24 | 23 | adantr 276 |
. . . 4
|
| 25 | 4, 24 | mpd 13 |
. . 3
|
| 26 | 25 | mpteq2dva 4150 |
. 2
|
| 27 | vex 2779 |
. . . . . . . . . 10
| |
| 28 | 20 | ffvelcdmda 5738 |
. . . . . . . . . . 11
|
| 29 | 28 | cjcld 11366 |
. . . . . . . . . 10
|
| 30 | 7 | ad2antrr 488 |
. . . . . . . . . . 11
|
| 31 | simplr 528 |
. . . . . . . . . . 11
| |
| 32 | simpr 110 |
. . . . . . . . . . 11
| |
| 33 | 30, 31, 32 | dvcjbr 15295 |
. . . . . . . . . 10
|
| 34 | breldmg 4903 |
. . . . . . . . . 10
| |
| 35 | 27, 29, 33, 34 | mp3an2i 1355 |
. . . . . . . . 9
|
| 36 | 35 | ex 115 |
. . . . . . . 8
|
| 37 | 36 | ssrdv 3207 |
. . . . . . 7
|
| 38 | ffvelcdm 5736 |
. . . . . . . . . . . . 13
| |
| 39 | 38 | adantlr 477 |
. . . . . . . . . . . 12
|
| 40 | 39 | cjcjd 11369 |
. . . . . . . . . . 11
|
| 41 | 40 | mpteq2dva 4150 |
. . . . . . . . . 10
|
| 42 | 39 | cjcld 11366 |
. . . . . . . . . . 11
|
| 43 | simpl 109 |
. . . . . . . . . . . . 13
| |
| 44 | 43 | feqmptd 5655 |
. . . . . . . . . . . 12
|
| 45 | 5 | a1i 9 |
. . . . . . . . . . . . 13
|
| 46 | 45 | feqmptd 5655 |
. . . . . . . . . . . 12
|
| 47 | fveq2 5599 |
. . . . . . . . . . . 12
| |
| 48 | 39, 44, 46, 47 | fmptco 5769 |
. . . . . . . . . . 11
|
| 49 | fveq2 5599 |
. . . . . . . . . . 11
| |
| 50 | 42, 48, 46, 49 | fmptco 5769 |
. . . . . . . . . 10
|
| 51 | 41, 50, 44 | 3eqtr4d 2250 |
. . . . . . . . 9
|
| 52 | 51 | oveq2d 5983 |
. . . . . . . 8
|
| 53 | 52 | dmeqd 4899 |
. . . . . . 7
|
| 54 | 37, 53 | sseqtrd 3239 |
. . . . . 6
|
| 55 | ffdm 5466 |
. . . . . . . . . . . . 13
| |
| 56 | 55 | simpld 112 |
. . . . . . . . . . . 12
|
| 57 | 56 | adantr 276 |
. . . . . . . . . . 11
|
| 58 | fdm 5451 |
. . . . . . . . . . . . 13
| |
| 59 | 58 | adantr 276 |
. . . . . . . . . . . 12
|
| 60 | 59, 13 | eqsstrd 3237 |
. . . . . . . . . . 11
|
| 61 | 15, 16 | elpm2 6790 |
. . . . . . . . . . 11
|
| 62 | 57, 60, 61 | sylanbrc 417 |
. . . . . . . . . 10
|
| 63 | dvfpm 15276 |
. . . . . . . . . 10
| |
| 64 | 62, 63 | syl 14 |
. . . . . . . . 9
|
| 65 | 64 | ffvelcdmda 5738 |
. . . . . . . 8
|
| 66 | 65 | cjcld 11366 |
. . . . . . 7
|
| 67 | breldmg 4903 |
. . . . . . 7
| |
| 68 | 27, 66, 4, 67 | mp3an2i 1355 |
. . . . . 6
|
| 69 | 54, 68 | eqelssd 3220 |
. . . . 5
|
| 70 | 69 | feq2d 5433 |
. . . 4
|
| 71 | 20, 70 | mpbid 147 |
. . 3
|
| 72 | 71 | feqmptd 5655 |
. 2
|
| 73 | 64 | feqmptd 5655 |
. . 3
|
| 74 | fveq2 5599 |
. . 3
| |
| 75 | 65, 73, 46, 74 | fmptco 5769 |
. 2
|
| 76 | 26, 72, 75 | 3eqtr4d 2250 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-iinf 4654 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-mulrcl 8059 ax-addcom 8060 ax-mulcom 8061 ax-addass 8062 ax-mulass 8063 ax-distr 8064 ax-i2m1 8065 ax-0lt1 8066 ax-1rid 8067 ax-0id 8068 ax-rnegex 8069 ax-precex 8070 ax-cnre 8071 ax-pre-ltirr 8072 ax-pre-ltwlin 8073 ax-pre-lttrn 8074 ax-pre-apti 8075 ax-pre-ltadd 8076 ax-pre-mulgt0 8077 ax-pre-mulext 8078 ax-arch 8079 ax-caucvg 8080 |
| This theorem depends on definitions: df-bi 117 df-stab 833 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-reu 2493 df-rmo 2494 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-if 3580 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-tr 4159 df-id 4358 df-po 4361 df-iso 4362 df-iord 4431 df-on 4433 df-ilim 4434 df-suc 4436 df-iom 4657 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-isom 5299 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-1st 6249 df-2nd 6250 df-recs 6414 df-frec 6500 df-map 6760 df-pm 6761 df-sup 7112 df-inf 7113 df-pnf 8144 df-mnf 8145 df-xr 8146 df-ltxr 8147 df-le 8148 df-sub 8280 df-neg 8281 df-reap 8683 df-ap 8690 df-div 8781 df-inn 9072 df-2 9130 df-3 9131 df-4 9132 df-n0 9331 df-z 9408 df-uz 9684 df-q 9776 df-rp 9811 df-xneg 9929 df-xadd 9930 df-ioo 10049 df-seqfrec 10630 df-exp 10721 df-cj 11268 df-re 11269 df-im 11270 df-rsqrt 11424 df-abs 11425 df-rest 13188 df-topgen 13207 df-psmet 14420 df-xmet 14421 df-met 14422 df-bl 14423 df-mopn 14424 df-top 14585 df-topon 14598 df-bases 14630 df-ntr 14683 df-cn 14775 df-cnp 14776 df-cncf 15158 df-limced 15243 df-dvap 15244 |
| This theorem is referenced by: dvfre 15297 dvmptcjx 15311 |
| Copyright terms: Public domain | W3C validator |