ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvcj Unicode version

Theorem dvcj 14858
Description: The derivative of the conjugate of a function. For the (more general) relation version, see dvcjbr 14857. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Mario Carneiro, 10-Feb-2015.)
Assertion
Ref Expression
dvcj  |-  ( ( F : X --> CC  /\  X  C_  RR )  -> 
( RR  _D  (
*  o.  F ) )  =  ( *  o.  ( RR  _D  F ) ) )

Proof of Theorem dvcj
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpll 527 . . . . 5  |-  ( ( ( F : X --> CC  /\  X  C_  RR )  /\  x  e.  dom  ( RR  _D  F
) )  ->  F : X --> CC )
2 simplr 528 . . . . 5  |-  ( ( ( F : X --> CC  /\  X  C_  RR )  /\  x  e.  dom  ( RR  _D  F
) )  ->  X  C_  RR )
3 simpr 110 . . . . 5  |-  ( ( ( F : X --> CC  /\  X  C_  RR )  /\  x  e.  dom  ( RR  _D  F
) )  ->  x  e.  dom  ( RR  _D  F ) )
41, 2, 3dvcjbr 14857 . . . 4  |-  ( ( ( F : X --> CC  /\  X  C_  RR )  /\  x  e.  dom  ( RR  _D  F
) )  ->  x
( RR  _D  (
*  o.  F ) ) ( * `  ( ( RR  _D  F ) `  x
) ) )
5 cjf 10991 . . . . . . . . . . . 12  |-  * : CC --> CC
6 fco 5419 . . . . . . . . . . . 12  |-  ( ( * : CC --> CC  /\  F : X --> CC )  ->  ( *  o.  F ) : X --> CC )
75, 6mpan 424 . . . . . . . . . . 11  |-  ( F : X --> CC  ->  ( *  o.  F ) : X --> CC )
87adantr 276 . . . . . . . . . 10  |-  ( ( F : X --> CC  /\  X  C_  RR )  -> 
( *  o.  F
) : X --> CC )
97fdmd 5410 . . . . . . . . . . . 12  |-  ( F : X --> CC  ->  dom  ( *  o.  F
)  =  X )
109adantr 276 . . . . . . . . . . 11  |-  ( ( F : X --> CC  /\  X  C_  RR )  ->  dom  ( *  o.  F
)  =  X )
1110feq2d 5391 . . . . . . . . . 10  |-  ( ( F : X --> CC  /\  X  C_  RR )  -> 
( ( *  o.  F ) : dom  ( *  o.  F
) --> CC  <->  ( *  o.  F ) : X --> CC ) )
128, 11mpbird 167 . . . . . . . . 9  |-  ( ( F : X --> CC  /\  X  C_  RR )  -> 
( *  o.  F
) : dom  (
*  o.  F ) --> CC )
13 simpr 110 . . . . . . . . . 10  |-  ( ( F : X --> CC  /\  X  C_  RR )  ->  X  C_  RR )
1410, 13eqsstrd 3215 . . . . . . . . 9  |-  ( ( F : X --> CC  /\  X  C_  RR )  ->  dom  ( *  o.  F
)  C_  RR )
15 cnex 7996 . . . . . . . . . 10  |-  CC  e.  _V
16 reex 8006 . . . . . . . . . 10  |-  RR  e.  _V
1715, 16elpm2 6734 . . . . . . . . 9  |-  ( ( *  o.  F )  e.  ( CC  ^pm  RR )  <->  ( ( *  o.  F ) : dom  ( *  o.  F ) --> CC  /\  dom  ( *  o.  F
)  C_  RR )
)
1812, 14, 17sylanbrc 417 . . . . . . . 8  |-  ( ( F : X --> CC  /\  X  C_  RR )  -> 
( *  o.  F
)  e.  ( CC 
^pm  RR ) )
19 dvfpm 14843 . . . . . . . 8  |-  ( ( *  o.  F )  e.  ( CC  ^pm  RR )  ->  ( RR  _D  ( *  o.  F
) ) : dom  ( RR  _D  (
*  o.  F ) ) --> CC )
2018, 19syl 14 . . . . . . 7  |-  ( ( F : X --> CC  /\  X  C_  RR )  -> 
( RR  _D  (
*  o.  F ) ) : dom  ( RR  _D  ( *  o.  F ) ) --> CC )
2120ffund 5407 . . . . . 6  |-  ( ( F : X --> CC  /\  X  C_  RR )  ->  Fun  ( RR  _D  (
*  o.  F ) ) )
22 funbrfv 5595 . . . . . 6  |-  ( Fun  ( RR  _D  (
*  o.  F ) )  ->  ( x
( RR  _D  (
*  o.  F ) ) ( * `  ( ( RR  _D  F ) `  x
) )  ->  (
( RR  _D  (
*  o.  F ) ) `  x )  =  ( * `  ( ( RR  _D  F ) `  x
) ) ) )
2321, 22syl 14 . . . . 5  |-  ( ( F : X --> CC  /\  X  C_  RR )  -> 
( x ( RR 
_D  ( *  o.  F ) ) ( * `  ( ( RR  _D  F ) `
 x ) )  ->  ( ( RR 
_D  ( *  o.  F ) ) `  x )  =  ( * `  ( ( RR  _D  F ) `
 x ) ) ) )
2423adantr 276 . . . 4  |-  ( ( ( F : X --> CC  /\  X  C_  RR )  /\  x  e.  dom  ( RR  _D  F
) )  ->  (
x ( RR  _D  ( *  o.  F
) ) ( * `
 ( ( RR 
_D  F ) `  x ) )  -> 
( ( RR  _D  ( *  o.  F
) ) `  x
)  =  ( * `
 ( ( RR 
_D  F ) `  x ) ) ) )
254, 24mpd 13 . . 3  |-  ( ( ( F : X --> CC  /\  X  C_  RR )  /\  x  e.  dom  ( RR  _D  F
) )  ->  (
( RR  _D  (
*  o.  F ) ) `  x )  =  ( * `  ( ( RR  _D  F ) `  x
) ) )
2625mpteq2dva 4119 . 2  |-  ( ( F : X --> CC  /\  X  C_  RR )  -> 
( x  e.  dom  ( RR  _D  F
)  |->  ( ( RR 
_D  ( *  o.  F ) ) `  x ) )  =  ( x  e.  dom  ( RR  _D  F
)  |->  ( * `  ( ( RR  _D  F ) `  x
) ) ) )
27 vex 2763 . . . . . . . . . 10  |-  x  e. 
_V
2820ffvelcdmda 5693 . . . . . . . . . . 11  |-  ( ( ( F : X --> CC  /\  X  C_  RR )  /\  x  e.  dom  ( RR  _D  (
*  o.  F ) ) )  ->  (
( RR  _D  (
*  o.  F ) ) `  x )  e.  CC )
2928cjcld 11084 . . . . . . . . . 10  |-  ( ( ( F : X --> CC  /\  X  C_  RR )  /\  x  e.  dom  ( RR  _D  (
*  o.  F ) ) )  ->  (
* `  ( ( RR  _D  ( *  o.  F ) ) `  x ) )  e.  CC )
307ad2antrr 488 . . . . . . . . . . 11  |-  ( ( ( F : X --> CC  /\  X  C_  RR )  /\  x  e.  dom  ( RR  _D  (
*  o.  F ) ) )  ->  (
*  o.  F ) : X --> CC )
31 simplr 528 . . . . . . . . . . 11  |-  ( ( ( F : X --> CC  /\  X  C_  RR )  /\  x  e.  dom  ( RR  _D  (
*  o.  F ) ) )  ->  X  C_  RR )
32 simpr 110 . . . . . . . . . . 11  |-  ( ( ( F : X --> CC  /\  X  C_  RR )  /\  x  e.  dom  ( RR  _D  (
*  o.  F ) ) )  ->  x  e.  dom  ( RR  _D  ( *  o.  F
) ) )
3330, 31, 32dvcjbr 14857 . . . . . . . . . 10  |-  ( ( ( F : X --> CC  /\  X  C_  RR )  /\  x  e.  dom  ( RR  _D  (
*  o.  F ) ) )  ->  x
( RR  _D  (
*  o.  ( *  o.  F ) ) ) ( * `  ( ( RR  _D  ( *  o.  F
) ) `  x
) ) )
34 breldmg 4868 . . . . . . . . . 10  |-  ( ( x  e.  _V  /\  ( * `  (
( RR  _D  (
*  o.  F ) ) `  x ) )  e.  CC  /\  x ( RR  _D  ( *  o.  (
*  o.  F ) ) ) ( * `
 ( ( RR 
_D  ( *  o.  F ) ) `  x ) ) )  ->  x  e.  dom  ( RR  _D  (
*  o.  ( *  o.  F ) ) ) )
3527, 29, 33, 34mp3an2i 1353 . . . . . . . . 9  |-  ( ( ( F : X --> CC  /\  X  C_  RR )  /\  x  e.  dom  ( RR  _D  (
*  o.  F ) ) )  ->  x  e.  dom  ( RR  _D  ( *  o.  (
*  o.  F ) ) ) )
3635ex 115 . . . . . . . 8  |-  ( ( F : X --> CC  /\  X  C_  RR )  -> 
( x  e.  dom  ( RR  _D  (
*  o.  F ) )  ->  x  e.  dom  ( RR  _D  (
*  o.  ( *  o.  F ) ) ) ) )
3736ssrdv 3185 . . . . . . 7  |-  ( ( F : X --> CC  /\  X  C_  RR )  ->  dom  ( RR  _D  (
*  o.  F ) )  C_  dom  ( RR 
_D  ( *  o.  ( *  o.  F
) ) ) )
38 ffvelcdm 5691 . . . . . . . . . . . . 13  |-  ( ( F : X --> CC  /\  x  e.  X )  ->  ( F `  x
)  e.  CC )
3938adantlr 477 . . . . . . . . . . . 12  |-  ( ( ( F : X --> CC  /\  X  C_  RR )  /\  x  e.  X
)  ->  ( F `  x )  e.  CC )
4039cjcjd 11087 . . . . . . . . . . 11  |-  ( ( ( F : X --> CC  /\  X  C_  RR )  /\  x  e.  X
)  ->  ( * `  ( * `  ( F `  x )
) )  =  ( F `  x ) )
4140mpteq2dva 4119 . . . . . . . . . 10  |-  ( ( F : X --> CC  /\  X  C_  RR )  -> 
( x  e.  X  |->  ( * `  (
* `  ( F `  x ) ) ) )  =  ( x  e.  X  |->  ( F `
 x ) ) )
4239cjcld 11084 . . . . . . . . . . 11  |-  ( ( ( F : X --> CC  /\  X  C_  RR )  /\  x  e.  X
)  ->  ( * `  ( F `  x
) )  e.  CC )
43 simpl 109 . . . . . . . . . . . . 13  |-  ( ( F : X --> CC  /\  X  C_  RR )  ->  F : X --> CC )
4443feqmptd 5610 . . . . . . . . . . . 12  |-  ( ( F : X --> CC  /\  X  C_  RR )  ->  F  =  ( x  e.  X  |->  ( F `
 x ) ) )
455a1i 9 . . . . . . . . . . . . 13  |-  ( ( F : X --> CC  /\  X  C_  RR )  ->  * : CC --> CC )
4645feqmptd 5610 . . . . . . . . . . . 12  |-  ( ( F : X --> CC  /\  X  C_  RR )  ->  *  =  ( y  e.  CC  |->  ( * `  y ) ) )
47 fveq2 5554 . . . . . . . . . . . 12  |-  ( y  =  ( F `  x )  ->  (
* `  y )  =  ( * `  ( F `  x ) ) )
4839, 44, 46, 47fmptco 5724 . . . . . . . . . . 11  |-  ( ( F : X --> CC  /\  X  C_  RR )  -> 
( *  o.  F
)  =  ( x  e.  X  |->  ( * `
 ( F `  x ) ) ) )
49 fveq2 5554 . . . . . . . . . . 11  |-  ( y  =  ( * `  ( F `  x ) )  ->  ( * `  y )  =  ( * `  ( * `
 ( F `  x ) ) ) )
5042, 48, 46, 49fmptco 5724 . . . . . . . . . 10  |-  ( ( F : X --> CC  /\  X  C_  RR )  -> 
( *  o.  (
*  o.  F ) )  =  ( x  e.  X  |->  ( * `
 ( * `  ( F `  x ) ) ) ) )
5141, 50, 443eqtr4d 2236 . . . . . . . . 9  |-  ( ( F : X --> CC  /\  X  C_  RR )  -> 
( *  o.  (
*  o.  F ) )  =  F )
5251oveq2d 5934 . . . . . . . 8  |-  ( ( F : X --> CC  /\  X  C_  RR )  -> 
( RR  _D  (
*  o.  ( *  o.  F ) ) )  =  ( RR 
_D  F ) )
5352dmeqd 4864 . . . . . . 7  |-  ( ( F : X --> CC  /\  X  C_  RR )  ->  dom  ( RR  _D  (
*  o.  ( *  o.  F ) ) )  =  dom  ( RR  _D  F ) )
5437, 53sseqtrd 3217 . . . . . 6  |-  ( ( F : X --> CC  /\  X  C_  RR )  ->  dom  ( RR  _D  (
*  o.  F ) )  C_  dom  ( RR 
_D  F ) )
55 ffdm 5424 . . . . . . . . . . . . 13  |-  ( F : X --> CC  ->  ( F : dom  F --> CC  /\  dom  F  C_  X ) )
5655simpld 112 . . . . . . . . . . . 12  |-  ( F : X --> CC  ->  F : dom  F --> CC )
5756adantr 276 . . . . . . . . . . 11  |-  ( ( F : X --> CC  /\  X  C_  RR )  ->  F : dom  F --> CC )
58 fdm 5409 . . . . . . . . . . . . 13  |-  ( F : X --> CC  ->  dom 
F  =  X )
5958adantr 276 . . . . . . . . . . . 12  |-  ( ( F : X --> CC  /\  X  C_  RR )  ->  dom  F  =  X )
6059, 13eqsstrd 3215 . . . . . . . . . . 11  |-  ( ( F : X --> CC  /\  X  C_  RR )  ->  dom  F  C_  RR )
6115, 16elpm2 6734 . . . . . . . . . . 11  |-  ( F  e.  ( CC  ^pm  RR )  <->  ( F : dom  F --> CC  /\  dom  F 
C_  RR ) )
6257, 60, 61sylanbrc 417 . . . . . . . . . 10  |-  ( ( F : X --> CC  /\  X  C_  RR )  ->  F  e.  ( CC  ^pm 
RR ) )
63 dvfpm 14843 . . . . . . . . . 10  |-  ( F  e.  ( CC  ^pm  RR )  ->  ( RR  _D  F ) : dom  ( RR  _D  F
) --> CC )
6462, 63syl 14 . . . . . . . . 9  |-  ( ( F : X --> CC  /\  X  C_  RR )  -> 
( RR  _D  F
) : dom  ( RR  _D  F ) --> CC )
6564ffvelcdmda 5693 . . . . . . . 8  |-  ( ( ( F : X --> CC  /\  X  C_  RR )  /\  x  e.  dom  ( RR  _D  F
) )  ->  (
( RR  _D  F
) `  x )  e.  CC )
6665cjcld 11084 . . . . . . 7  |-  ( ( ( F : X --> CC  /\  X  C_  RR )  /\  x  e.  dom  ( RR  _D  F
) )  ->  (
* `  ( ( RR  _D  F ) `  x ) )  e.  CC )
67 breldmg 4868 . . . . . . 7  |-  ( ( x  e.  _V  /\  ( * `  (
( RR  _D  F
) `  x )
)  e.  CC  /\  x ( RR  _D  ( *  o.  F
) ) ( * `
 ( ( RR 
_D  F ) `  x ) ) )  ->  x  e.  dom  ( RR  _D  (
*  o.  F ) ) )
6827, 66, 4, 67mp3an2i 1353 . . . . . 6  |-  ( ( ( F : X --> CC  /\  X  C_  RR )  /\  x  e.  dom  ( RR  _D  F
) )  ->  x  e.  dom  ( RR  _D  ( *  o.  F
) ) )
6954, 68eqelssd 3198 . . . . 5  |-  ( ( F : X --> CC  /\  X  C_  RR )  ->  dom  ( RR  _D  (
*  o.  F ) )  =  dom  ( RR  _D  F ) )
7069feq2d 5391 . . . 4  |-  ( ( F : X --> CC  /\  X  C_  RR )  -> 
( ( RR  _D  ( *  o.  F
) ) : dom  ( RR  _D  (
*  o.  F ) ) --> CC  <->  ( RR  _D  ( *  o.  F
) ) : dom  ( RR  _D  F
) --> CC ) )
7120, 70mpbid 147 . . 3  |-  ( ( F : X --> CC  /\  X  C_  RR )  -> 
( RR  _D  (
*  o.  F ) ) : dom  ( RR  _D  F ) --> CC )
7271feqmptd 5610 . 2  |-  ( ( F : X --> CC  /\  X  C_  RR )  -> 
( RR  _D  (
*  o.  F ) )  =  ( x  e.  dom  ( RR 
_D  F )  |->  ( ( RR  _D  (
*  o.  F ) ) `  x ) ) )
7364feqmptd 5610 . . 3  |-  ( ( F : X --> CC  /\  X  C_  RR )  -> 
( RR  _D  F
)  =  ( x  e.  dom  ( RR 
_D  F )  |->  ( ( RR  _D  F
) `  x )
) )
74 fveq2 5554 . . 3  |-  ( y  =  ( ( RR 
_D  F ) `  x )  ->  (
* `  y )  =  ( * `  ( ( RR  _D  F ) `  x
) ) )
7565, 73, 46, 74fmptco 5724 . 2  |-  ( ( F : X --> CC  /\  X  C_  RR )  -> 
( *  o.  ( RR  _D  F ) )  =  ( x  e. 
dom  ( RR  _D  F )  |->  ( * `
 ( ( RR 
_D  F ) `  x ) ) ) )
7626, 72, 753eqtr4d 2236 1  |-  ( ( F : X --> CC  /\  X  C_  RR )  -> 
( RR  _D  (
*  o.  F ) )  =  ( *  o.  ( RR  _D  F ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2164   _Vcvv 2760    C_ wss 3153   class class class wbr 4029    |-> cmpt 4090   dom cdm 4659    o. ccom 4663   Fun wfun 5248   -->wf 5250   ` cfv 5254  (class class class)co 5918    ^pm cpm 6703   CCcc 7870   RRcr 7871   *ccj 10983    _D cdv 14809
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988  ax-pre-mulgt0 7989  ax-pre-mulext 7990  ax-arch 7991  ax-caucvg 7992
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-po 4327  df-iso 4328  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-isom 5263  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-frec 6444  df-map 6704  df-pm 6705  df-sup 7043  df-inf 7044  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-reap 8594  df-ap 8601  df-div 8692  df-inn 8983  df-2 9041  df-3 9042  df-4 9043  df-n0 9241  df-z 9318  df-uz 9593  df-q 9685  df-rp 9720  df-xneg 9838  df-xadd 9839  df-ioo 9958  df-seqfrec 10519  df-exp 10610  df-cj 10986  df-re 10987  df-im 10988  df-rsqrt 11142  df-abs 11143  df-rest 12852  df-topgen 12871  df-psmet 14039  df-xmet 14040  df-met 14041  df-bl 14042  df-mopn 14043  df-top 14166  df-topon 14179  df-bases 14211  df-ntr 14264  df-cn 14356  df-cnp 14357  df-cncf 14726  df-limced 14810  df-dvap 14811
This theorem is referenced by:  dvfre  14859  dvmptcjx  14871
  Copyright terms: Public domain W3C validator