ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvcj Unicode version

Theorem dvcj 14526
Description: The derivative of the conjugate of a function. For the (more general) relation version, see dvcjbr 14525. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Mario Carneiro, 10-Feb-2015.)
Assertion
Ref Expression
dvcj  |-  ( ( F : X --> CC  /\  X  C_  RR )  -> 
( RR  _D  (
*  o.  F ) )  =  ( *  o.  ( RR  _D  F ) ) )

Proof of Theorem dvcj
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpll 527 . . . . 5  |-  ( ( ( F : X --> CC  /\  X  C_  RR )  /\  x  e.  dom  ( RR  _D  F
) )  ->  F : X --> CC )
2 simplr 528 . . . . 5  |-  ( ( ( F : X --> CC  /\  X  C_  RR )  /\  x  e.  dom  ( RR  _D  F
) )  ->  X  C_  RR )
3 simpr 110 . . . . 5  |-  ( ( ( F : X --> CC  /\  X  C_  RR )  /\  x  e.  dom  ( RR  _D  F
) )  ->  x  e.  dom  ( RR  _D  F ) )
41, 2, 3dvcjbr 14525 . . . 4  |-  ( ( ( F : X --> CC  /\  X  C_  RR )  /\  x  e.  dom  ( RR  _D  F
) )  ->  x
( RR  _D  (
*  o.  F ) ) ( * `  ( ( RR  _D  F ) `  x
) ) )
5 cjf 10870 . . . . . . . . . . . 12  |-  * : CC --> CC
6 fco 5393 . . . . . . . . . . . 12  |-  ( ( * : CC --> CC  /\  F : X --> CC )  ->  ( *  o.  F ) : X --> CC )
75, 6mpan 424 . . . . . . . . . . 11  |-  ( F : X --> CC  ->  ( *  o.  F ) : X --> CC )
87adantr 276 . . . . . . . . . 10  |-  ( ( F : X --> CC  /\  X  C_  RR )  -> 
( *  o.  F
) : X --> CC )
97fdmd 5384 . . . . . . . . . . . 12  |-  ( F : X --> CC  ->  dom  ( *  o.  F
)  =  X )
109adantr 276 . . . . . . . . . . 11  |-  ( ( F : X --> CC  /\  X  C_  RR )  ->  dom  ( *  o.  F
)  =  X )
1110feq2d 5365 . . . . . . . . . 10  |-  ( ( F : X --> CC  /\  X  C_  RR )  -> 
( ( *  o.  F ) : dom  ( *  o.  F
) --> CC  <->  ( *  o.  F ) : X --> CC ) )
128, 11mpbird 167 . . . . . . . . 9  |-  ( ( F : X --> CC  /\  X  C_  RR )  -> 
( *  o.  F
) : dom  (
*  o.  F ) --> CC )
13 simpr 110 . . . . . . . . . 10  |-  ( ( F : X --> CC  /\  X  C_  RR )  ->  X  C_  RR )
1410, 13eqsstrd 3203 . . . . . . . . 9  |-  ( ( F : X --> CC  /\  X  C_  RR )  ->  dom  ( *  o.  F
)  C_  RR )
15 cnex 7949 . . . . . . . . . 10  |-  CC  e.  _V
16 reex 7959 . . . . . . . . . 10  |-  RR  e.  _V
1715, 16elpm2 6694 . . . . . . . . 9  |-  ( ( *  o.  F )  e.  ( CC  ^pm  RR )  <->  ( ( *  o.  F ) : dom  ( *  o.  F ) --> CC  /\  dom  ( *  o.  F
)  C_  RR )
)
1812, 14, 17sylanbrc 417 . . . . . . . 8  |-  ( ( F : X --> CC  /\  X  C_  RR )  -> 
( *  o.  F
)  e.  ( CC 
^pm  RR ) )
19 dvfpm 14511 . . . . . . . 8  |-  ( ( *  o.  F )  e.  ( CC  ^pm  RR )  ->  ( RR  _D  ( *  o.  F
) ) : dom  ( RR  _D  (
*  o.  F ) ) --> CC )
2018, 19syl 14 . . . . . . 7  |-  ( ( F : X --> CC  /\  X  C_  RR )  -> 
( RR  _D  (
*  o.  F ) ) : dom  ( RR  _D  ( *  o.  F ) ) --> CC )
2120ffund 5381 . . . . . 6  |-  ( ( F : X --> CC  /\  X  C_  RR )  ->  Fun  ( RR  _D  (
*  o.  F ) ) )
22 funbrfv 5567 . . . . . 6  |-  ( Fun  ( RR  _D  (
*  o.  F ) )  ->  ( x
( RR  _D  (
*  o.  F ) ) ( * `  ( ( RR  _D  F ) `  x
) )  ->  (
( RR  _D  (
*  o.  F ) ) `  x )  =  ( * `  ( ( RR  _D  F ) `  x
) ) ) )
2321, 22syl 14 . . . . 5  |-  ( ( F : X --> CC  /\  X  C_  RR )  -> 
( x ( RR 
_D  ( *  o.  F ) ) ( * `  ( ( RR  _D  F ) `
 x ) )  ->  ( ( RR 
_D  ( *  o.  F ) ) `  x )  =  ( * `  ( ( RR  _D  F ) `
 x ) ) ) )
2423adantr 276 . . . 4  |-  ( ( ( F : X --> CC  /\  X  C_  RR )  /\  x  e.  dom  ( RR  _D  F
) )  ->  (
x ( RR  _D  ( *  o.  F
) ) ( * `
 ( ( RR 
_D  F ) `  x ) )  -> 
( ( RR  _D  ( *  o.  F
) ) `  x
)  =  ( * `
 ( ( RR 
_D  F ) `  x ) ) ) )
254, 24mpd 13 . . 3  |-  ( ( ( F : X --> CC  /\  X  C_  RR )  /\  x  e.  dom  ( RR  _D  F
) )  ->  (
( RR  _D  (
*  o.  F ) ) `  x )  =  ( * `  ( ( RR  _D  F ) `  x
) ) )
2625mpteq2dva 4105 . 2  |-  ( ( F : X --> CC  /\  X  C_  RR )  -> 
( x  e.  dom  ( RR  _D  F
)  |->  ( ( RR 
_D  ( *  o.  F ) ) `  x ) )  =  ( x  e.  dom  ( RR  _D  F
)  |->  ( * `  ( ( RR  _D  F ) `  x
) ) ) )
27 vex 2752 . . . . . . . . . 10  |-  x  e. 
_V
2820ffvelcdmda 5664 . . . . . . . . . . 11  |-  ( ( ( F : X --> CC  /\  X  C_  RR )  /\  x  e.  dom  ( RR  _D  (
*  o.  F ) ) )  ->  (
( RR  _D  (
*  o.  F ) ) `  x )  e.  CC )
2928cjcld 10963 . . . . . . . . . 10  |-  ( ( ( F : X --> CC  /\  X  C_  RR )  /\  x  e.  dom  ( RR  _D  (
*  o.  F ) ) )  ->  (
* `  ( ( RR  _D  ( *  o.  F ) ) `  x ) )  e.  CC )
307ad2antrr 488 . . . . . . . . . . 11  |-  ( ( ( F : X --> CC  /\  X  C_  RR )  /\  x  e.  dom  ( RR  _D  (
*  o.  F ) ) )  ->  (
*  o.  F ) : X --> CC )
31 simplr 528 . . . . . . . . . . 11  |-  ( ( ( F : X --> CC  /\  X  C_  RR )  /\  x  e.  dom  ( RR  _D  (
*  o.  F ) ) )  ->  X  C_  RR )
32 simpr 110 . . . . . . . . . . 11  |-  ( ( ( F : X --> CC  /\  X  C_  RR )  /\  x  e.  dom  ( RR  _D  (
*  o.  F ) ) )  ->  x  e.  dom  ( RR  _D  ( *  o.  F
) ) )
3330, 31, 32dvcjbr 14525 . . . . . . . . . 10  |-  ( ( ( F : X --> CC  /\  X  C_  RR )  /\  x  e.  dom  ( RR  _D  (
*  o.  F ) ) )  ->  x
( RR  _D  (
*  o.  ( *  o.  F ) ) ) ( * `  ( ( RR  _D  ( *  o.  F
) ) `  x
) ) )
34 breldmg 4845 . . . . . . . . . 10  |-  ( ( x  e.  _V  /\  ( * `  (
( RR  _D  (
*  o.  F ) ) `  x ) )  e.  CC  /\  x ( RR  _D  ( *  o.  (
*  o.  F ) ) ) ( * `
 ( ( RR 
_D  ( *  o.  F ) ) `  x ) ) )  ->  x  e.  dom  ( RR  _D  (
*  o.  ( *  o.  F ) ) ) )
3527, 29, 33, 34mp3an2i 1352 . . . . . . . . 9  |-  ( ( ( F : X --> CC  /\  X  C_  RR )  /\  x  e.  dom  ( RR  _D  (
*  o.  F ) ) )  ->  x  e.  dom  ( RR  _D  ( *  o.  (
*  o.  F ) ) ) )
3635ex 115 . . . . . . . 8  |-  ( ( F : X --> CC  /\  X  C_  RR )  -> 
( x  e.  dom  ( RR  _D  (
*  o.  F ) )  ->  x  e.  dom  ( RR  _D  (
*  o.  ( *  o.  F ) ) ) ) )
3736ssrdv 3173 . . . . . . 7  |-  ( ( F : X --> CC  /\  X  C_  RR )  ->  dom  ( RR  _D  (
*  o.  F ) )  C_  dom  ( RR 
_D  ( *  o.  ( *  o.  F
) ) ) )
38 ffvelcdm 5662 . . . . . . . . . . . . 13  |-  ( ( F : X --> CC  /\  x  e.  X )  ->  ( F `  x
)  e.  CC )
3938adantlr 477 . . . . . . . . . . . 12  |-  ( ( ( F : X --> CC  /\  X  C_  RR )  /\  x  e.  X
)  ->  ( F `  x )  e.  CC )
4039cjcjd 10966 . . . . . . . . . . 11  |-  ( ( ( F : X --> CC  /\  X  C_  RR )  /\  x  e.  X
)  ->  ( * `  ( * `  ( F `  x )
) )  =  ( F `  x ) )
4140mpteq2dva 4105 . . . . . . . . . 10  |-  ( ( F : X --> CC  /\  X  C_  RR )  -> 
( x  e.  X  |->  ( * `  (
* `  ( F `  x ) ) ) )  =  ( x  e.  X  |->  ( F `
 x ) ) )
4239cjcld 10963 . . . . . . . . . . 11  |-  ( ( ( F : X --> CC  /\  X  C_  RR )  /\  x  e.  X
)  ->  ( * `  ( F `  x
) )  e.  CC )
43 simpl 109 . . . . . . . . . . . . 13  |-  ( ( F : X --> CC  /\  X  C_  RR )  ->  F : X --> CC )
4443feqmptd 5582 . . . . . . . . . . . 12  |-  ( ( F : X --> CC  /\  X  C_  RR )  ->  F  =  ( x  e.  X  |->  ( F `
 x ) ) )
455a1i 9 . . . . . . . . . . . . 13  |-  ( ( F : X --> CC  /\  X  C_  RR )  ->  * : CC --> CC )
4645feqmptd 5582 . . . . . . . . . . . 12  |-  ( ( F : X --> CC  /\  X  C_  RR )  ->  *  =  ( y  e.  CC  |->  ( * `  y ) ) )
47 fveq2 5527 . . . . . . . . . . . 12  |-  ( y  =  ( F `  x )  ->  (
* `  y )  =  ( * `  ( F `  x ) ) )
4839, 44, 46, 47fmptco 5695 . . . . . . . . . . 11  |-  ( ( F : X --> CC  /\  X  C_  RR )  -> 
( *  o.  F
)  =  ( x  e.  X  |->  ( * `
 ( F `  x ) ) ) )
49 fveq2 5527 . . . . . . . . . . 11  |-  ( y  =  ( * `  ( F `  x ) )  ->  ( * `  y )  =  ( * `  ( * `
 ( F `  x ) ) ) )
5042, 48, 46, 49fmptco 5695 . . . . . . . . . 10  |-  ( ( F : X --> CC  /\  X  C_  RR )  -> 
( *  o.  (
*  o.  F ) )  =  ( x  e.  X  |->  ( * `
 ( * `  ( F `  x ) ) ) ) )
5141, 50, 443eqtr4d 2230 . . . . . . . . 9  |-  ( ( F : X --> CC  /\  X  C_  RR )  -> 
( *  o.  (
*  o.  F ) )  =  F )
5251oveq2d 5904 . . . . . . . 8  |-  ( ( F : X --> CC  /\  X  C_  RR )  -> 
( RR  _D  (
*  o.  ( *  o.  F ) ) )  =  ( RR 
_D  F ) )
5352dmeqd 4841 . . . . . . 7  |-  ( ( F : X --> CC  /\  X  C_  RR )  ->  dom  ( RR  _D  (
*  o.  ( *  o.  F ) ) )  =  dom  ( RR  _D  F ) )
5437, 53sseqtrd 3205 . . . . . 6  |-  ( ( F : X --> CC  /\  X  C_  RR )  ->  dom  ( RR  _D  (
*  o.  F ) )  C_  dom  ( RR 
_D  F ) )
55 ffdm 5398 . . . . . . . . . . . . 13  |-  ( F : X --> CC  ->  ( F : dom  F --> CC  /\  dom  F  C_  X ) )
5655simpld 112 . . . . . . . . . . . 12  |-  ( F : X --> CC  ->  F : dom  F --> CC )
5756adantr 276 . . . . . . . . . . 11  |-  ( ( F : X --> CC  /\  X  C_  RR )  ->  F : dom  F --> CC )
58 fdm 5383 . . . . . . . . . . . . 13  |-  ( F : X --> CC  ->  dom 
F  =  X )
5958adantr 276 . . . . . . . . . . . 12  |-  ( ( F : X --> CC  /\  X  C_  RR )  ->  dom  F  =  X )
6059, 13eqsstrd 3203 . . . . . . . . . . 11  |-  ( ( F : X --> CC  /\  X  C_  RR )  ->  dom  F  C_  RR )
6115, 16elpm2 6694 . . . . . . . . . . 11  |-  ( F  e.  ( CC  ^pm  RR )  <->  ( F : dom  F --> CC  /\  dom  F 
C_  RR ) )
6257, 60, 61sylanbrc 417 . . . . . . . . . 10  |-  ( ( F : X --> CC  /\  X  C_  RR )  ->  F  e.  ( CC  ^pm 
RR ) )
63 dvfpm 14511 . . . . . . . . . 10  |-  ( F  e.  ( CC  ^pm  RR )  ->  ( RR  _D  F ) : dom  ( RR  _D  F
) --> CC )
6462, 63syl 14 . . . . . . . . 9  |-  ( ( F : X --> CC  /\  X  C_  RR )  -> 
( RR  _D  F
) : dom  ( RR  _D  F ) --> CC )
6564ffvelcdmda 5664 . . . . . . . 8  |-  ( ( ( F : X --> CC  /\  X  C_  RR )  /\  x  e.  dom  ( RR  _D  F
) )  ->  (
( RR  _D  F
) `  x )  e.  CC )
6665cjcld 10963 . . . . . . 7  |-  ( ( ( F : X --> CC  /\  X  C_  RR )  /\  x  e.  dom  ( RR  _D  F
) )  ->  (
* `  ( ( RR  _D  F ) `  x ) )  e.  CC )
67 breldmg 4845 . . . . . . 7  |-  ( ( x  e.  _V  /\  ( * `  (
( RR  _D  F
) `  x )
)  e.  CC  /\  x ( RR  _D  ( *  o.  F
) ) ( * `
 ( ( RR 
_D  F ) `  x ) ) )  ->  x  e.  dom  ( RR  _D  (
*  o.  F ) ) )
6827, 66, 4, 67mp3an2i 1352 . . . . . 6  |-  ( ( ( F : X --> CC  /\  X  C_  RR )  /\  x  e.  dom  ( RR  _D  F
) )  ->  x  e.  dom  ( RR  _D  ( *  o.  F
) ) )
6954, 68eqelssd 3186 . . . . 5  |-  ( ( F : X --> CC  /\  X  C_  RR )  ->  dom  ( RR  _D  (
*  o.  F ) )  =  dom  ( RR  _D  F ) )
7069feq2d 5365 . . . 4  |-  ( ( F : X --> CC  /\  X  C_  RR )  -> 
( ( RR  _D  ( *  o.  F
) ) : dom  ( RR  _D  (
*  o.  F ) ) --> CC  <->  ( RR  _D  ( *  o.  F
) ) : dom  ( RR  _D  F
) --> CC ) )
7120, 70mpbid 147 . . 3  |-  ( ( F : X --> CC  /\  X  C_  RR )  -> 
( RR  _D  (
*  o.  F ) ) : dom  ( RR  _D  F ) --> CC )
7271feqmptd 5582 . 2  |-  ( ( F : X --> CC  /\  X  C_  RR )  -> 
( RR  _D  (
*  o.  F ) )  =  ( x  e.  dom  ( RR 
_D  F )  |->  ( ( RR  _D  (
*  o.  F ) ) `  x ) ) )
7364feqmptd 5582 . . 3  |-  ( ( F : X --> CC  /\  X  C_  RR )  -> 
( RR  _D  F
)  =  ( x  e.  dom  ( RR 
_D  F )  |->  ( ( RR  _D  F
) `  x )
) )
74 fveq2 5527 . . 3  |-  ( y  =  ( ( RR 
_D  F ) `  x )  ->  (
* `  y )  =  ( * `  ( ( RR  _D  F ) `  x
) ) )
7565, 73, 46, 74fmptco 5695 . 2  |-  ( ( F : X --> CC  /\  X  C_  RR )  -> 
( *  o.  ( RR  _D  F ) )  =  ( x  e. 
dom  ( RR  _D  F )  |->  ( * `
 ( ( RR 
_D  F ) `  x ) ) ) )
7626, 72, 753eqtr4d 2230 1  |-  ( ( F : X --> CC  /\  X  C_  RR )  -> 
( RR  _D  (
*  o.  F ) )  =  ( *  o.  ( RR  _D  F ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1363    e. wcel 2158   _Vcvv 2749    C_ wss 3141   class class class wbr 4015    |-> cmpt 4076   dom cdm 4638    o. ccom 4642   Fun wfun 5222   -->wf 5224   ` cfv 5228  (class class class)co 5888    ^pm cpm 6663   CCcc 7823   RRcr 7824   *ccj 10862    _D cdv 14477
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-coll 4130  ax-sep 4133  ax-nul 4141  ax-pow 4186  ax-pr 4221  ax-un 4445  ax-setind 4548  ax-iinf 4599  ax-cnex 7916  ax-resscn 7917  ax-1cn 7918  ax-1re 7919  ax-icn 7920  ax-addcl 7921  ax-addrcl 7922  ax-mulcl 7923  ax-mulrcl 7924  ax-addcom 7925  ax-mulcom 7926  ax-addass 7927  ax-mulass 7928  ax-distr 7929  ax-i2m1 7930  ax-0lt1 7931  ax-1rid 7932  ax-0id 7933  ax-rnegex 7934  ax-precex 7935  ax-cnre 7936  ax-pre-ltirr 7937  ax-pre-ltwlin 7938  ax-pre-lttrn 7939  ax-pre-apti 7940  ax-pre-ltadd 7941  ax-pre-mulgt0 7942  ax-pre-mulext 7943  ax-arch 7944  ax-caucvg 7945
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 980  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ne 2358  df-nel 2453  df-ral 2470  df-rex 2471  df-reu 2472  df-rmo 2473  df-rab 2474  df-v 2751  df-sbc 2975  df-csb 3070  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-nul 3435  df-if 3547  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-int 3857  df-iun 3900  df-br 4016  df-opab 4077  df-mpt 4078  df-tr 4114  df-id 4305  df-po 4308  df-iso 4309  df-iord 4378  df-on 4380  df-ilim 4381  df-suc 4383  df-iom 4602  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-rn 4649  df-res 4650  df-ima 4651  df-iota 5190  df-fun 5230  df-fn 5231  df-f 5232  df-f1 5233  df-fo 5234  df-f1o 5235  df-fv 5236  df-isom 5237  df-riota 5844  df-ov 5891  df-oprab 5892  df-mpo 5893  df-1st 6155  df-2nd 6156  df-recs 6320  df-frec 6406  df-map 6664  df-pm 6665  df-sup 6997  df-inf 6998  df-pnf 8008  df-mnf 8009  df-xr 8010  df-ltxr 8011  df-le 8012  df-sub 8144  df-neg 8145  df-reap 8546  df-ap 8553  df-div 8644  df-inn 8934  df-2 8992  df-3 8993  df-4 8994  df-n0 9191  df-z 9268  df-uz 9543  df-q 9634  df-rp 9668  df-xneg 9786  df-xadd 9787  df-ioo 9906  df-seqfrec 10460  df-exp 10534  df-cj 10865  df-re 10866  df-im 10867  df-rsqrt 11021  df-abs 11022  df-rest 12708  df-topgen 12727  df-psmet 13786  df-xmet 13787  df-met 13788  df-bl 13789  df-mopn 13790  df-top 13851  df-topon 13864  df-bases 13896  df-ntr 13949  df-cn 14041  df-cnp 14042  df-cncf 14411  df-limced 14478  df-dvap 14479
This theorem is referenced by:  dvfre  14527  dvmptcjx  14539
  Copyright terms: Public domain W3C validator