ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvcj Unicode version

Theorem dvcj 14258
Description: The derivative of the conjugate of a function. For the (more general) relation version, see dvcjbr 14257. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Mario Carneiro, 10-Feb-2015.)
Assertion
Ref Expression
dvcj  |-  ( ( F : X --> CC  /\  X  C_  RR )  -> 
( RR  _D  (
*  o.  F ) )  =  ( *  o.  ( RR  _D  F ) ) )

Proof of Theorem dvcj
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpll 527 . . . . 5  |-  ( ( ( F : X --> CC  /\  X  C_  RR )  /\  x  e.  dom  ( RR  _D  F
) )  ->  F : X --> CC )
2 simplr 528 . . . . 5  |-  ( ( ( F : X --> CC  /\  X  C_  RR )  /\  x  e.  dom  ( RR  _D  F
) )  ->  X  C_  RR )
3 simpr 110 . . . . 5  |-  ( ( ( F : X --> CC  /\  X  C_  RR )  /\  x  e.  dom  ( RR  _D  F
) )  ->  x  e.  dom  ( RR  _D  F ) )
41, 2, 3dvcjbr 14257 . . . 4  |-  ( ( ( F : X --> CC  /\  X  C_  RR )  /\  x  e.  dom  ( RR  _D  F
) )  ->  x
( RR  _D  (
*  o.  F ) ) ( * `  ( ( RR  _D  F ) `  x
) ) )
5 cjf 10858 . . . . . . . . . . . 12  |-  * : CC --> CC
6 fco 5383 . . . . . . . . . . . 12  |-  ( ( * : CC --> CC  /\  F : X --> CC )  ->  ( *  o.  F ) : X --> CC )
75, 6mpan 424 . . . . . . . . . . 11  |-  ( F : X --> CC  ->  ( *  o.  F ) : X --> CC )
87adantr 276 . . . . . . . . . 10  |-  ( ( F : X --> CC  /\  X  C_  RR )  -> 
( *  o.  F
) : X --> CC )
97fdmd 5374 . . . . . . . . . . . 12  |-  ( F : X --> CC  ->  dom  ( *  o.  F
)  =  X )
109adantr 276 . . . . . . . . . . 11  |-  ( ( F : X --> CC  /\  X  C_  RR )  ->  dom  ( *  o.  F
)  =  X )
1110feq2d 5355 . . . . . . . . . 10  |-  ( ( F : X --> CC  /\  X  C_  RR )  -> 
( ( *  o.  F ) : dom  ( *  o.  F
) --> CC  <->  ( *  o.  F ) : X --> CC ) )
128, 11mpbird 167 . . . . . . . . 9  |-  ( ( F : X --> CC  /\  X  C_  RR )  -> 
( *  o.  F
) : dom  (
*  o.  F ) --> CC )
13 simpr 110 . . . . . . . . . 10  |-  ( ( F : X --> CC  /\  X  C_  RR )  ->  X  C_  RR )
1410, 13eqsstrd 3193 . . . . . . . . 9  |-  ( ( F : X --> CC  /\  X  C_  RR )  ->  dom  ( *  o.  F
)  C_  RR )
15 cnex 7937 . . . . . . . . . 10  |-  CC  e.  _V
16 reex 7947 . . . . . . . . . 10  |-  RR  e.  _V
1715, 16elpm2 6682 . . . . . . . . 9  |-  ( ( *  o.  F )  e.  ( CC  ^pm  RR )  <->  ( ( *  o.  F ) : dom  ( *  o.  F ) --> CC  /\  dom  ( *  o.  F
)  C_  RR )
)
1812, 14, 17sylanbrc 417 . . . . . . . 8  |-  ( ( F : X --> CC  /\  X  C_  RR )  -> 
( *  o.  F
)  e.  ( CC 
^pm  RR ) )
19 dvfpm 14243 . . . . . . . 8  |-  ( ( *  o.  F )  e.  ( CC  ^pm  RR )  ->  ( RR  _D  ( *  o.  F
) ) : dom  ( RR  _D  (
*  o.  F ) ) --> CC )
2018, 19syl 14 . . . . . . 7  |-  ( ( F : X --> CC  /\  X  C_  RR )  -> 
( RR  _D  (
*  o.  F ) ) : dom  ( RR  _D  ( *  o.  F ) ) --> CC )
2120ffund 5371 . . . . . 6  |-  ( ( F : X --> CC  /\  X  C_  RR )  ->  Fun  ( RR  _D  (
*  o.  F ) ) )
22 funbrfv 5556 . . . . . 6  |-  ( Fun  ( RR  _D  (
*  o.  F ) )  ->  ( x
( RR  _D  (
*  o.  F ) ) ( * `  ( ( RR  _D  F ) `  x
) )  ->  (
( RR  _D  (
*  o.  F ) ) `  x )  =  ( * `  ( ( RR  _D  F ) `  x
) ) ) )
2321, 22syl 14 . . . . 5  |-  ( ( F : X --> CC  /\  X  C_  RR )  -> 
( x ( RR 
_D  ( *  o.  F ) ) ( * `  ( ( RR  _D  F ) `
 x ) )  ->  ( ( RR 
_D  ( *  o.  F ) ) `  x )  =  ( * `  ( ( RR  _D  F ) `
 x ) ) ) )
2423adantr 276 . . . 4  |-  ( ( ( F : X --> CC  /\  X  C_  RR )  /\  x  e.  dom  ( RR  _D  F
) )  ->  (
x ( RR  _D  ( *  o.  F
) ) ( * `
 ( ( RR 
_D  F ) `  x ) )  -> 
( ( RR  _D  ( *  o.  F
) ) `  x
)  =  ( * `
 ( ( RR 
_D  F ) `  x ) ) ) )
254, 24mpd 13 . . 3  |-  ( ( ( F : X --> CC  /\  X  C_  RR )  /\  x  e.  dom  ( RR  _D  F
) )  ->  (
( RR  _D  (
*  o.  F ) ) `  x )  =  ( * `  ( ( RR  _D  F ) `  x
) ) )
2625mpteq2dva 4095 . 2  |-  ( ( F : X --> CC  /\  X  C_  RR )  -> 
( x  e.  dom  ( RR  _D  F
)  |->  ( ( RR 
_D  ( *  o.  F ) ) `  x ) )  =  ( x  e.  dom  ( RR  _D  F
)  |->  ( * `  ( ( RR  _D  F ) `  x
) ) ) )
27 vex 2742 . . . . . . . . . 10  |-  x  e. 
_V
2820ffvelcdmda 5653 . . . . . . . . . . 11  |-  ( ( ( F : X --> CC  /\  X  C_  RR )  /\  x  e.  dom  ( RR  _D  (
*  o.  F ) ) )  ->  (
( RR  _D  (
*  o.  F ) ) `  x )  e.  CC )
2928cjcld 10951 . . . . . . . . . 10  |-  ( ( ( F : X --> CC  /\  X  C_  RR )  /\  x  e.  dom  ( RR  _D  (
*  o.  F ) ) )  ->  (
* `  ( ( RR  _D  ( *  o.  F ) ) `  x ) )  e.  CC )
307ad2antrr 488 . . . . . . . . . . 11  |-  ( ( ( F : X --> CC  /\  X  C_  RR )  /\  x  e.  dom  ( RR  _D  (
*  o.  F ) ) )  ->  (
*  o.  F ) : X --> CC )
31 simplr 528 . . . . . . . . . . 11  |-  ( ( ( F : X --> CC  /\  X  C_  RR )  /\  x  e.  dom  ( RR  _D  (
*  o.  F ) ) )  ->  X  C_  RR )
32 simpr 110 . . . . . . . . . . 11  |-  ( ( ( F : X --> CC  /\  X  C_  RR )  /\  x  e.  dom  ( RR  _D  (
*  o.  F ) ) )  ->  x  e.  dom  ( RR  _D  ( *  o.  F
) ) )
3330, 31, 32dvcjbr 14257 . . . . . . . . . 10  |-  ( ( ( F : X --> CC  /\  X  C_  RR )  /\  x  e.  dom  ( RR  _D  (
*  o.  F ) ) )  ->  x
( RR  _D  (
*  o.  ( *  o.  F ) ) ) ( * `  ( ( RR  _D  ( *  o.  F
) ) `  x
) ) )
34 breldmg 4835 . . . . . . . . . 10  |-  ( ( x  e.  _V  /\  ( * `  (
( RR  _D  (
*  o.  F ) ) `  x ) )  e.  CC  /\  x ( RR  _D  ( *  o.  (
*  o.  F ) ) ) ( * `
 ( ( RR 
_D  ( *  o.  F ) ) `  x ) ) )  ->  x  e.  dom  ( RR  _D  (
*  o.  ( *  o.  F ) ) ) )
3527, 29, 33, 34mp3an2i 1342 . . . . . . . . 9  |-  ( ( ( F : X --> CC  /\  X  C_  RR )  /\  x  e.  dom  ( RR  _D  (
*  o.  F ) ) )  ->  x  e.  dom  ( RR  _D  ( *  o.  (
*  o.  F ) ) ) )
3635ex 115 . . . . . . . 8  |-  ( ( F : X --> CC  /\  X  C_  RR )  -> 
( x  e.  dom  ( RR  _D  (
*  o.  F ) )  ->  x  e.  dom  ( RR  _D  (
*  o.  ( *  o.  F ) ) ) ) )
3736ssrdv 3163 . . . . . . 7  |-  ( ( F : X --> CC  /\  X  C_  RR )  ->  dom  ( RR  _D  (
*  o.  F ) )  C_  dom  ( RR 
_D  ( *  o.  ( *  o.  F
) ) ) )
38 ffvelcdm 5651 . . . . . . . . . . . . 13  |-  ( ( F : X --> CC  /\  x  e.  X )  ->  ( F `  x
)  e.  CC )
3938adantlr 477 . . . . . . . . . . . 12  |-  ( ( ( F : X --> CC  /\  X  C_  RR )  /\  x  e.  X
)  ->  ( F `  x )  e.  CC )
4039cjcjd 10954 . . . . . . . . . . 11  |-  ( ( ( F : X --> CC  /\  X  C_  RR )  /\  x  e.  X
)  ->  ( * `  ( * `  ( F `  x )
) )  =  ( F `  x ) )
4140mpteq2dva 4095 . . . . . . . . . 10  |-  ( ( F : X --> CC  /\  X  C_  RR )  -> 
( x  e.  X  |->  ( * `  (
* `  ( F `  x ) ) ) )  =  ( x  e.  X  |->  ( F `
 x ) ) )
4239cjcld 10951 . . . . . . . . . . 11  |-  ( ( ( F : X --> CC  /\  X  C_  RR )  /\  x  e.  X
)  ->  ( * `  ( F `  x
) )  e.  CC )
43 simpl 109 . . . . . . . . . . . . 13  |-  ( ( F : X --> CC  /\  X  C_  RR )  ->  F : X --> CC )
4443feqmptd 5571 . . . . . . . . . . . 12  |-  ( ( F : X --> CC  /\  X  C_  RR )  ->  F  =  ( x  e.  X  |->  ( F `
 x ) ) )
455a1i 9 . . . . . . . . . . . . 13  |-  ( ( F : X --> CC  /\  X  C_  RR )  ->  * : CC --> CC )
4645feqmptd 5571 . . . . . . . . . . . 12  |-  ( ( F : X --> CC  /\  X  C_  RR )  ->  *  =  ( y  e.  CC  |->  ( * `  y ) ) )
47 fveq2 5517 . . . . . . . . . . . 12  |-  ( y  =  ( F `  x )  ->  (
* `  y )  =  ( * `  ( F `  x ) ) )
4839, 44, 46, 47fmptco 5684 . . . . . . . . . . 11  |-  ( ( F : X --> CC  /\  X  C_  RR )  -> 
( *  o.  F
)  =  ( x  e.  X  |->  ( * `
 ( F `  x ) ) ) )
49 fveq2 5517 . . . . . . . . . . 11  |-  ( y  =  ( * `  ( F `  x ) )  ->  ( * `  y )  =  ( * `  ( * `
 ( F `  x ) ) ) )
5042, 48, 46, 49fmptco 5684 . . . . . . . . . 10  |-  ( ( F : X --> CC  /\  X  C_  RR )  -> 
( *  o.  (
*  o.  F ) )  =  ( x  e.  X  |->  ( * `
 ( * `  ( F `  x ) ) ) ) )
5141, 50, 443eqtr4d 2220 . . . . . . . . 9  |-  ( ( F : X --> CC  /\  X  C_  RR )  -> 
( *  o.  (
*  o.  F ) )  =  F )
5251oveq2d 5893 . . . . . . . 8  |-  ( ( F : X --> CC  /\  X  C_  RR )  -> 
( RR  _D  (
*  o.  ( *  o.  F ) ) )  =  ( RR 
_D  F ) )
5352dmeqd 4831 . . . . . . 7  |-  ( ( F : X --> CC  /\  X  C_  RR )  ->  dom  ( RR  _D  (
*  o.  ( *  o.  F ) ) )  =  dom  ( RR  _D  F ) )
5437, 53sseqtrd 3195 . . . . . 6  |-  ( ( F : X --> CC  /\  X  C_  RR )  ->  dom  ( RR  _D  (
*  o.  F ) )  C_  dom  ( RR 
_D  F ) )
55 ffdm 5388 . . . . . . . . . . . . 13  |-  ( F : X --> CC  ->  ( F : dom  F --> CC  /\  dom  F  C_  X ) )
5655simpld 112 . . . . . . . . . . . 12  |-  ( F : X --> CC  ->  F : dom  F --> CC )
5756adantr 276 . . . . . . . . . . 11  |-  ( ( F : X --> CC  /\  X  C_  RR )  ->  F : dom  F --> CC )
58 fdm 5373 . . . . . . . . . . . . 13  |-  ( F : X --> CC  ->  dom 
F  =  X )
5958adantr 276 . . . . . . . . . . . 12  |-  ( ( F : X --> CC  /\  X  C_  RR )  ->  dom  F  =  X )
6059, 13eqsstrd 3193 . . . . . . . . . . 11  |-  ( ( F : X --> CC  /\  X  C_  RR )  ->  dom  F  C_  RR )
6115, 16elpm2 6682 . . . . . . . . . . 11  |-  ( F  e.  ( CC  ^pm  RR )  <->  ( F : dom  F --> CC  /\  dom  F 
C_  RR ) )
6257, 60, 61sylanbrc 417 . . . . . . . . . 10  |-  ( ( F : X --> CC  /\  X  C_  RR )  ->  F  e.  ( CC  ^pm 
RR ) )
63 dvfpm 14243 . . . . . . . . . 10  |-  ( F  e.  ( CC  ^pm  RR )  ->  ( RR  _D  F ) : dom  ( RR  _D  F
) --> CC )
6462, 63syl 14 . . . . . . . . 9  |-  ( ( F : X --> CC  /\  X  C_  RR )  -> 
( RR  _D  F
) : dom  ( RR  _D  F ) --> CC )
6564ffvelcdmda 5653 . . . . . . . 8  |-  ( ( ( F : X --> CC  /\  X  C_  RR )  /\  x  e.  dom  ( RR  _D  F
) )  ->  (
( RR  _D  F
) `  x )  e.  CC )
6665cjcld 10951 . . . . . . 7  |-  ( ( ( F : X --> CC  /\  X  C_  RR )  /\  x  e.  dom  ( RR  _D  F
) )  ->  (
* `  ( ( RR  _D  F ) `  x ) )  e.  CC )
67 breldmg 4835 . . . . . . 7  |-  ( ( x  e.  _V  /\  ( * `  (
( RR  _D  F
) `  x )
)  e.  CC  /\  x ( RR  _D  ( *  o.  F
) ) ( * `
 ( ( RR 
_D  F ) `  x ) ) )  ->  x  e.  dom  ( RR  _D  (
*  o.  F ) ) )
6827, 66, 4, 67mp3an2i 1342 . . . . . 6  |-  ( ( ( F : X --> CC  /\  X  C_  RR )  /\  x  e.  dom  ( RR  _D  F
) )  ->  x  e.  dom  ( RR  _D  ( *  o.  F
) ) )
6954, 68eqelssd 3176 . . . . 5  |-  ( ( F : X --> CC  /\  X  C_  RR )  ->  dom  ( RR  _D  (
*  o.  F ) )  =  dom  ( RR  _D  F ) )
7069feq2d 5355 . . . 4  |-  ( ( F : X --> CC  /\  X  C_  RR )  -> 
( ( RR  _D  ( *  o.  F
) ) : dom  ( RR  _D  (
*  o.  F ) ) --> CC  <->  ( RR  _D  ( *  o.  F
) ) : dom  ( RR  _D  F
) --> CC ) )
7120, 70mpbid 147 . . 3  |-  ( ( F : X --> CC  /\  X  C_  RR )  -> 
( RR  _D  (
*  o.  F ) ) : dom  ( RR  _D  F ) --> CC )
7271feqmptd 5571 . 2  |-  ( ( F : X --> CC  /\  X  C_  RR )  -> 
( RR  _D  (
*  o.  F ) )  =  ( x  e.  dom  ( RR 
_D  F )  |->  ( ( RR  _D  (
*  o.  F ) ) `  x ) ) )
7364feqmptd 5571 . . 3  |-  ( ( F : X --> CC  /\  X  C_  RR )  -> 
( RR  _D  F
)  =  ( x  e.  dom  ( RR 
_D  F )  |->  ( ( RR  _D  F
) `  x )
) )
74 fveq2 5517 . . 3  |-  ( y  =  ( ( RR 
_D  F ) `  x )  ->  (
* `  y )  =  ( * `  ( ( RR  _D  F ) `  x
) ) )
7565, 73, 46, 74fmptco 5684 . 2  |-  ( ( F : X --> CC  /\  X  C_  RR )  -> 
( *  o.  ( RR  _D  F ) )  =  ( x  e. 
dom  ( RR  _D  F )  |->  ( * `
 ( ( RR 
_D  F ) `  x ) ) ) )
7626, 72, 753eqtr4d 2220 1  |-  ( ( F : X --> CC  /\  X  C_  RR )  -> 
( RR  _D  (
*  o.  F ) )  =  ( *  o.  ( RR  _D  F ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1353    e. wcel 2148   _Vcvv 2739    C_ wss 3131   class class class wbr 4005    |-> cmpt 4066   dom cdm 4628    o. ccom 4632   Fun wfun 5212   -->wf 5214   ` cfv 5218  (class class class)co 5877    ^pm cpm 6651   CCcc 7811   RRcr 7812   *ccj 10850    _D cdv 14209
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-iinf 4589  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-mulrcl 7912  ax-addcom 7913  ax-mulcom 7914  ax-addass 7915  ax-mulass 7916  ax-distr 7917  ax-i2m1 7918  ax-0lt1 7919  ax-1rid 7920  ax-0id 7921  ax-rnegex 7922  ax-precex 7923  ax-cnre 7924  ax-pre-ltirr 7925  ax-pre-ltwlin 7926  ax-pre-lttrn 7927  ax-pre-apti 7928  ax-pre-ltadd 7929  ax-pre-mulgt0 7930  ax-pre-mulext 7931  ax-arch 7932  ax-caucvg 7933
This theorem depends on definitions:  df-bi 117  df-stab 831  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-if 3537  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-id 4295  df-po 4298  df-iso 4299  df-iord 4368  df-on 4370  df-ilim 4371  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-isom 5227  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-1st 6143  df-2nd 6144  df-recs 6308  df-frec 6394  df-map 6652  df-pm 6653  df-sup 6985  df-inf 6986  df-pnf 7996  df-mnf 7997  df-xr 7998  df-ltxr 7999  df-le 8000  df-sub 8132  df-neg 8133  df-reap 8534  df-ap 8541  df-div 8632  df-inn 8922  df-2 8980  df-3 8981  df-4 8982  df-n0 9179  df-z 9256  df-uz 9531  df-q 9622  df-rp 9656  df-xneg 9774  df-xadd 9775  df-ioo 9894  df-seqfrec 10448  df-exp 10522  df-cj 10853  df-re 10854  df-im 10855  df-rsqrt 11009  df-abs 11010  df-rest 12695  df-topgen 12714  df-psmet 13532  df-xmet 13533  df-met 13534  df-bl 13535  df-mopn 13536  df-top 13583  df-topon 13596  df-bases 13628  df-ntr 13681  df-cn 13773  df-cnp 13774  df-cncf 14143  df-limced 14210  df-dvap 14211
This theorem is referenced by:  dvfre  14259  dvmptcjx  14271
  Copyright terms: Public domain W3C validator