ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funin Unicode version

Theorem funin 5329
Description: The intersection with a function is a function. Exercise 14(a) of [Enderton] p. 53. (Contributed by NM, 19-Mar-2004.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
Assertion
Ref Expression
funin  |-  ( Fun 
F  ->  Fun  ( F  i^i  G ) )

Proof of Theorem funin
StepHypRef Expression
1 inss1 3383 . 2  |-  ( F  i^i  G )  C_  F
2 funss 5277 . 2  |-  ( ( F  i^i  G ) 
C_  F  ->  ( Fun  F  ->  Fun  ( F  i^i  G ) ) )
31, 2ax-mp 5 1  |-  ( Fun 
F  ->  Fun  ( F  i^i  G ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    i^i cin 3156    C_ wss 3157   Fun wfun 5252
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-in 3163  df-ss 3170  df-br 4034  df-opab 4095  df-rel 4670  df-cnv 4671  df-co 4672  df-fun 5260
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator