ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funin Unicode version

Theorem funin 5259
Description: The intersection with a function is a function. Exercise 14(a) of [Enderton] p. 53. (Contributed by NM, 19-Mar-2004.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
Assertion
Ref Expression
funin  |-  ( Fun 
F  ->  Fun  ( F  i^i  G ) )

Proof of Theorem funin
StepHypRef Expression
1 inss1 3342 . 2  |-  ( F  i^i  G )  C_  F
2 funss 5207 . 2  |-  ( ( F  i^i  G ) 
C_  F  ->  ( Fun  F  ->  Fun  ( F  i^i  G ) ) )
31, 2ax-mp 5 1  |-  ( Fun 
F  ->  Fun  ( F  i^i  G ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    i^i cin 3115    C_ wss 3116   Fun wfun 5182
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-in 3122  df-ss 3129  df-br 3983  df-opab 4044  df-rel 4611  df-cnv 4612  df-co 4613  df-fun 5190
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator