ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funin Unicode version

Theorem funin 5344
Description: The intersection with a function is a function. Exercise 14(a) of [Enderton] p. 53. (Contributed by NM, 19-Mar-2004.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
Assertion
Ref Expression
funin  |-  ( Fun 
F  ->  Fun  ( F  i^i  G ) )

Proof of Theorem funin
StepHypRef Expression
1 inss1 3392 . 2  |-  ( F  i^i  G )  C_  F
2 funss 5289 . 2  |-  ( ( F  i^i  G ) 
C_  F  ->  ( Fun  F  ->  Fun  ( F  i^i  G ) ) )
31, 2ax-mp 5 1  |-  ( Fun 
F  ->  Fun  ( F  i^i  G ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    i^i cin 3164    C_ wss 3165   Fun wfun 5264
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-v 2773  df-in 3171  df-ss 3178  df-br 4044  df-opab 4105  df-rel 4681  df-cnv 4682  df-co 4683  df-fun 5272
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator