ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funin Unicode version

Theorem funin 5152
Description: The intersection with a function is a function. Exercise 14(a) of [Enderton] p. 53. (Contributed by NM, 19-Mar-2004.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
Assertion
Ref Expression
funin  |-  ( Fun 
F  ->  Fun  ( F  i^i  G ) )

Proof of Theorem funin
StepHypRef Expression
1 inss1 3262 . 2  |-  ( F  i^i  G )  C_  F
2 funss 5100 . 2  |-  ( ( F  i^i  G ) 
C_  F  ->  ( Fun  F  ->  Fun  ( F  i^i  G ) ) )
31, 2ax-mp 7 1  |-  ( Fun 
F  ->  Fun  ( F  i^i  G ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    i^i cin 3036    C_ wss 3037   Fun wfun 5075
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097
This theorem depends on definitions:  df-bi 116  df-tru 1317  df-nf 1420  df-sb 1719  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2244  df-v 2659  df-in 3043  df-ss 3050  df-br 3896  df-opab 3950  df-rel 4506  df-cnv 4507  df-co 4508  df-fun 5083
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator