Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > funres11 | Unicode version |
Description: The restriction of a one-to-one function is one-to-one. (Contributed by NM, 25-Mar-1998.) |
Ref | Expression |
---|---|
funres11 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resss 4915 | . 2 | |
2 | cnvss 4784 | . 2 | |
3 | funss 5217 | . 2 | |
4 | 1, 2, 3 | mp2b 8 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wss 3121 ccnv 4610 cres 4613 wfun 5192 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 df-in 3127 df-ss 3134 df-br 3990 df-opab 4051 df-rel 4618 df-cnv 4619 df-co 4620 df-res 4623 df-fun 5200 |
This theorem is referenced by: f1ssres 5412 resdif 5464 ssdomg 6756 sbthlemi8 6941 |
Copyright terms: Public domain | W3C validator |