ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funres11 Unicode version

Theorem funres11 5235
Description: The restriction of a one-to-one function is one-to-one. (Contributed by NM, 25-Mar-1998.)
Assertion
Ref Expression
funres11  |-  ( Fun  `' F  ->  Fun  `' ( F  |`  A ) )

Proof of Theorem funres11
StepHypRef Expression
1 resss 4883 . 2  |-  ( F  |`  A )  C_  F
2 cnvss 4752 . 2  |-  ( ( F  |`  A )  C_  F  ->  `' ( F  |`  A )  C_  `' F )
3 funss 5182 . 2  |-  ( `' ( F  |`  A ) 
C_  `' F  -> 
( Fun  `' F  ->  Fun  `' ( F  |`  A ) ) )
41, 2, 3mp2b 8 1  |-  ( Fun  `' F  ->  Fun  `' ( F  |`  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    C_ wss 3098   `'ccnv 4578    |` cres 4581   Fun wfun 5157
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1481  ax-10 1482  ax-11 1483  ax-i12 1484  ax-bndl 1486  ax-4 1487  ax-17 1503  ax-i9 1507  ax-ial 1511  ax-i5r 1512  ax-ext 2136
This theorem depends on definitions:  df-bi 116  df-tru 1335  df-nf 1438  df-sb 1740  df-clab 2141  df-cleq 2147  df-clel 2150  df-nfc 2285  df-v 2711  df-in 3104  df-ss 3111  df-br 3962  df-opab 4022  df-rel 4586  df-cnv 4587  df-co 4588  df-res 4591  df-fun 5165
This theorem is referenced by:  f1ssres  5377  resdif  5429  ssdomg  6712  sbthlemi8  6897
  Copyright terms: Public domain W3C validator