ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fun11uni Unicode version

Theorem fun11uni 5363
Description: The union of a chain (with respect to inclusion) of one-to-one functions is a one-to-one function. (Contributed by NM, 11-Aug-2004.)
Assertion
Ref Expression
fun11uni  |-  ( A. f  e.  A  (
( Fun  f  /\  Fun  `' f )  /\  A. g  e.  A  ( f  C_  g  \/  g  C_  f ) )  ->  ( Fun  U. A  /\  Fun  `' U. A ) )
Distinct variable group:    f, g, A

Proof of Theorem fun11uni
StepHypRef Expression
1 simpl 109 . . . . 5  |-  ( ( Fun  f  /\  Fun  `' f )  ->  Fun  f )
21anim1i 340 . . . 4  |-  ( ( ( Fun  f  /\  Fun  `' f )  /\  A. g  e.  A  ( f  C_  g  \/  g  C_  f ) )  ->  ( Fun  f  /\  A. g  e.  A  ( f  C_  g  \/  g  C_  f ) ) )
32ralimi 2571 . . 3  |-  ( A. f  e.  A  (
( Fun  f  /\  Fun  `' f )  /\  A. g  e.  A  ( f  C_  g  \/  g  C_  f ) )  ->  A. f  e.  A  ( Fun  f  /\  A. g  e.  A  (
f  C_  g  \/  g  C_  f ) ) )
4 fununi 5361 . . 3  |-  ( A. f  e.  A  ( Fun  f  /\  A. g  e.  A  ( f  C_  g  \/  g  C_  f ) )  ->  Fun  U. A )
53, 4syl 14 . 2  |-  ( A. f  e.  A  (
( Fun  f  /\  Fun  `' f )  /\  A. g  e.  A  ( f  C_  g  \/  g  C_  f ) )  ->  Fun  U. A )
6 simpr 110 . . . . 5  |-  ( ( Fun  f  /\  Fun  `' f )  ->  Fun  `' f )
76anim1i 340 . . . 4  |-  ( ( ( Fun  f  /\  Fun  `' f )  /\  A. g  e.  A  ( f  C_  g  \/  g  C_  f ) )  ->  ( Fun  `' f  /\  A. g  e.  A  ( f  C_  g  \/  g  C_  f ) ) )
87ralimi 2571 . . 3  |-  ( A. f  e.  A  (
( Fun  f  /\  Fun  `' f )  /\  A. g  e.  A  ( f  C_  g  \/  g  C_  f ) )  ->  A. f  e.  A  ( Fun  `' f  /\  A. g  e.  A  ( f  C_  g  \/  g  C_  f ) ) )
9 funcnvuni 5362 . . 3  |-  ( A. f  e.  A  ( Fun  `' f  /\  A. g  e.  A  ( f  C_  g  \/  g  C_  f ) )  ->  Fun  `' U. A )
108, 9syl 14 . 2  |-  ( A. f  e.  A  (
( Fun  f  /\  Fun  `' f )  /\  A. g  e.  A  ( f  C_  g  \/  g  C_  f ) )  ->  Fun  `' U. A
)
115, 10jca 306 1  |-  ( A. f  e.  A  (
( Fun  f  /\  Fun  `' f )  /\  A. g  e.  A  ( f  C_  g  \/  g  C_  f ) )  ->  ( Fun  U. A  /\  Fun  `' U. A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ wo 710   A.wral 2486    C_ wss 3174   U.cuni 3864   `'ccnv 4692   Fun wfun 5284
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-iun 3943  df-br 4060  df-opab 4122  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-fun 5292
This theorem is referenced by:  fun11iun  5565  ennnfonelemf1  12904
  Copyright terms: Public domain W3C validator