ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fun11uni Unicode version

Theorem fun11uni 5258
Description: The union of a chain (with respect to inclusion) of one-to-one functions is a one-to-one function. (Contributed by NM, 11-Aug-2004.)
Assertion
Ref Expression
fun11uni  |-  ( A. f  e.  A  (
( Fun  f  /\  Fun  `' f )  /\  A. g  e.  A  ( f  C_  g  \/  g  C_  f ) )  ->  ( Fun  U. A  /\  Fun  `' U. A ) )
Distinct variable group:    f, g, A

Proof of Theorem fun11uni
StepHypRef Expression
1 simpl 108 . . . . 5  |-  ( ( Fun  f  /\  Fun  `' f )  ->  Fun  f )
21anim1i 338 . . . 4  |-  ( ( ( Fun  f  /\  Fun  `' f )  /\  A. g  e.  A  ( f  C_  g  \/  g  C_  f ) )  ->  ( Fun  f  /\  A. g  e.  A  ( f  C_  g  \/  g  C_  f ) ) )
32ralimi 2529 . . 3  |-  ( A. f  e.  A  (
( Fun  f  /\  Fun  `' f )  /\  A. g  e.  A  ( f  C_  g  \/  g  C_  f ) )  ->  A. f  e.  A  ( Fun  f  /\  A. g  e.  A  (
f  C_  g  \/  g  C_  f ) ) )
4 fununi 5256 . . 3  |-  ( A. f  e.  A  ( Fun  f  /\  A. g  e.  A  ( f  C_  g  \/  g  C_  f ) )  ->  Fun  U. A )
53, 4syl 14 . 2  |-  ( A. f  e.  A  (
( Fun  f  /\  Fun  `' f )  /\  A. g  e.  A  ( f  C_  g  \/  g  C_  f ) )  ->  Fun  U. A )
6 simpr 109 . . . . 5  |-  ( ( Fun  f  /\  Fun  `' f )  ->  Fun  `' f )
76anim1i 338 . . . 4  |-  ( ( ( Fun  f  /\  Fun  `' f )  /\  A. g  e.  A  ( f  C_  g  \/  g  C_  f ) )  ->  ( Fun  `' f  /\  A. g  e.  A  ( f  C_  g  \/  g  C_  f ) ) )
87ralimi 2529 . . 3  |-  ( A. f  e.  A  (
( Fun  f  /\  Fun  `' f )  /\  A. g  e.  A  ( f  C_  g  \/  g  C_  f ) )  ->  A. f  e.  A  ( Fun  `' f  /\  A. g  e.  A  ( f  C_  g  \/  g  C_  f ) ) )
9 funcnvuni 5257 . . 3  |-  ( A. f  e.  A  ( Fun  `' f  /\  A. g  e.  A  ( f  C_  g  \/  g  C_  f ) )  ->  Fun  `' U. A )
108, 9syl 14 . 2  |-  ( A. f  e.  A  (
( Fun  f  /\  Fun  `' f )  /\  A. g  e.  A  ( f  C_  g  \/  g  C_  f ) )  ->  Fun  `' U. A
)
115, 10jca 304 1  |-  ( A. f  e.  A  (
( Fun  f  /\  Fun  `' f )  /\  A. g  e.  A  ( f  C_  g  \/  g  C_  f ) )  ->  ( Fun  U. A  /\  Fun  `' U. A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    \/ wo 698   A.wral 2444    C_ wss 3116   U.cuni 3789   `'ccnv 4603   Fun wfun 5182
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-iun 3868  df-br 3983  df-opab 4044  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-fun 5190
This theorem is referenced by:  fun11iun  5453  ennnfonelemf1  12351
  Copyright terms: Public domain W3C validator