ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fun11uni Unicode version

Theorem fun11uni 5324
Description: The union of a chain (with respect to inclusion) of one-to-one functions is a one-to-one function. (Contributed by NM, 11-Aug-2004.)
Assertion
Ref Expression
fun11uni  |-  ( A. f  e.  A  (
( Fun  f  /\  Fun  `' f )  /\  A. g  e.  A  ( f  C_  g  \/  g  C_  f ) )  ->  ( Fun  U. A  /\  Fun  `' U. A ) )
Distinct variable group:    f, g, A

Proof of Theorem fun11uni
StepHypRef Expression
1 simpl 109 . . . . 5  |-  ( ( Fun  f  /\  Fun  `' f )  ->  Fun  f )
21anim1i 340 . . . 4  |-  ( ( ( Fun  f  /\  Fun  `' f )  /\  A. g  e.  A  ( f  C_  g  \/  g  C_  f ) )  ->  ( Fun  f  /\  A. g  e.  A  ( f  C_  g  \/  g  C_  f ) ) )
32ralimi 2557 . . 3  |-  ( A. f  e.  A  (
( Fun  f  /\  Fun  `' f )  /\  A. g  e.  A  ( f  C_  g  \/  g  C_  f ) )  ->  A. f  e.  A  ( Fun  f  /\  A. g  e.  A  (
f  C_  g  \/  g  C_  f ) ) )
4 fununi 5322 . . 3  |-  ( A. f  e.  A  ( Fun  f  /\  A. g  e.  A  ( f  C_  g  \/  g  C_  f ) )  ->  Fun  U. A )
53, 4syl 14 . 2  |-  ( A. f  e.  A  (
( Fun  f  /\  Fun  `' f )  /\  A. g  e.  A  ( f  C_  g  \/  g  C_  f ) )  ->  Fun  U. A )
6 simpr 110 . . . . 5  |-  ( ( Fun  f  /\  Fun  `' f )  ->  Fun  `' f )
76anim1i 340 . . . 4  |-  ( ( ( Fun  f  /\  Fun  `' f )  /\  A. g  e.  A  ( f  C_  g  \/  g  C_  f ) )  ->  ( Fun  `' f  /\  A. g  e.  A  ( f  C_  g  \/  g  C_  f ) ) )
87ralimi 2557 . . 3  |-  ( A. f  e.  A  (
( Fun  f  /\  Fun  `' f )  /\  A. g  e.  A  ( f  C_  g  \/  g  C_  f ) )  ->  A. f  e.  A  ( Fun  `' f  /\  A. g  e.  A  ( f  C_  g  \/  g  C_  f ) ) )
9 funcnvuni 5323 . . 3  |-  ( A. f  e.  A  ( Fun  `' f  /\  A. g  e.  A  ( f  C_  g  \/  g  C_  f ) )  ->  Fun  `' U. A )
108, 9syl 14 . 2  |-  ( A. f  e.  A  (
( Fun  f  /\  Fun  `' f )  /\  A. g  e.  A  ( f  C_  g  \/  g  C_  f ) )  ->  Fun  `' U. A
)
115, 10jca 306 1  |-  ( A. f  e.  A  (
( Fun  f  /\  Fun  `' f )  /\  A. g  e.  A  ( f  C_  g  \/  g  C_  f ) )  ->  ( Fun  U. A  /\  Fun  `' U. A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ wo 709   A.wral 2472    C_ wss 3153   U.cuni 3835   `'ccnv 4658   Fun wfun 5248
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-iun 3914  df-br 4030  df-opab 4091  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-fun 5256
This theorem is referenced by:  fun11iun  5521  ennnfonelemf1  12575
  Copyright terms: Public domain W3C validator