ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  inss1 Unicode version

Theorem inss1 3384
Description: The intersection of two classes is a subset of one of them. Part of Exercise 12 of [TakeutiZaring] p. 18. (Contributed by NM, 27-Apr-1994.)
Assertion
Ref Expression
inss1  |-  ( A  i^i  B )  C_  A

Proof of Theorem inss1
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 elin 3347 . . 3  |-  ( x  e.  ( A  i^i  B )  <->  ( x  e.  A  /\  x  e.  B ) )
21simplbi 274 . 2  |-  ( x  e.  ( A  i^i  B )  ->  x  e.  A )
32ssriv 3188 1  |-  ( A  i^i  B )  C_  A
Colors of variables: wff set class
Syntax hints:    e. wcel 2167    i^i cin 3156    C_ wss 3157
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-in 3163  df-ss 3170
This theorem is referenced by:  inss2  3385  ssinss1  3393  unabs  3395  inssddif  3405  inv1  3488  disjdif  3524  inundifss  3529  relin1  4782  resss  4971  resmpt3  4996  cnvcnvss  5125  funin  5330  funimass2  5337  fnresin1  5373  fnres  5375  fresin  5437  ssimaex  5623  fneqeql2  5672  isoini2  5867  ofrfval  6146  ofvalg  6147  ofrval  6148  off  6150  ofres  6152  ofco  6156  smores  6352  smores2  6354  tfrlem5  6374  pmresg  6737  unfiin  6989  infidc  7002  sbthlem7  7031  peano5nnnn  7962  peano5nni  8996  rexanuz  11156  nninfdclemcl  12676  nninfdclemp1  12678  fvsetsid  12723  tgvalex  12951  tgval2  14313  eltg3  14319  tgcl  14326  tgdom  14334  tgidm  14336  epttop  14352  ntropn  14379  ntrin  14386  cnptopresti  14500  cnptoprest  14501  txcnmpt  14535  xmetres  14644  metres  14645  blin2  14694  metrest  14768  tgioo  14816  limcresi  14928  2sqlem8  15390  bj-charfun  15479  bj-charfundc  15480  bj-charfundcALT  15481
  Copyright terms: Public domain W3C validator