ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  inss1 Unicode version

Theorem inss1 3424
Description: The intersection of two classes is a subset of one of them. Part of Exercise 12 of [TakeutiZaring] p. 18. (Contributed by NM, 27-Apr-1994.)
Assertion
Ref Expression
inss1  |-  ( A  i^i  B )  C_  A

Proof of Theorem inss1
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 elin 3387 . . 3  |-  ( x  e.  ( A  i^i  B )  <->  ( x  e.  A  /\  x  e.  B ) )
21simplbi 274 . 2  |-  ( x  e.  ( A  i^i  B )  ->  x  e.  A )
32ssriv 3228 1  |-  ( A  i^i  B )  C_  A
Colors of variables: wff set class
Syntax hints:    e. wcel 2200    i^i cin 3196    C_ wss 3197
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-in 3203  df-ss 3210
This theorem is referenced by:  inss2  3425  ssinss1  3433  unabs  3435  inssddif  3445  inv1  3528  disjdif  3564  inundifss  3569  relin1  4837  resss  5029  resmpt3  5054  cnvcnvss  5183  funin  5392  funimass2  5399  fnresin1  5438  fnres  5440  fresin  5504  ssimaex  5695  fneqeql2  5744  isoini2  5943  ofrfval  6227  ofvalg  6228  ofrval  6229  off  6231  ofres  6233  ofco  6237  smores  6438  smores2  6440  tfrlem5  6460  pmresg  6823  unfiin  7088  infidc  7101  sbthlem7  7130  peano5nnnn  8079  peano5nni  9113  rexanuz  11499  nninfdclemcl  13019  nninfdclemp1  13021  fvsetsid  13066  tgvalex  13296  tgval2  14725  eltg3  14731  tgcl  14738  tgdom  14746  tgidm  14748  epttop  14764  ntropn  14791  ntrin  14798  cnptopresti  14912  cnptoprest  14913  txcnmpt  14947  xmetres  15056  metres  15057  blin2  15106  metrest  15180  tgioo  15228  limcresi  15340  2sqlem8  15802  bj-charfun  16170  bj-charfundc  16171  bj-charfundcALT  16172
  Copyright terms: Public domain W3C validator