ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  inss1 Unicode version

Theorem inss1 3383
Description: The intersection of two classes is a subset of one of them. Part of Exercise 12 of [TakeutiZaring] p. 18. (Contributed by NM, 27-Apr-1994.)
Assertion
Ref Expression
inss1  |-  ( A  i^i  B )  C_  A

Proof of Theorem inss1
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 elin 3346 . . 3  |-  ( x  e.  ( A  i^i  B )  <->  ( x  e.  A  /\  x  e.  B ) )
21simplbi 274 . 2  |-  ( x  e.  ( A  i^i  B )  ->  x  e.  A )
32ssriv 3187 1  |-  ( A  i^i  B )  C_  A
Colors of variables: wff set class
Syntax hints:    e. wcel 2167    i^i cin 3156    C_ wss 3157
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-in 3163  df-ss 3170
This theorem is referenced by:  inss2  3384  ssinss1  3392  unabs  3394  inssddif  3404  inv1  3487  disjdif  3523  inundifss  3528  relin1  4781  resss  4970  resmpt3  4995  cnvcnvss  5124  funin  5329  funimass2  5336  fnresin1  5372  fnres  5374  fresin  5436  ssimaex  5622  fneqeql2  5671  isoini2  5866  ofrfval  6144  ofvalg  6145  ofrval  6146  off  6148  ofres  6150  ofco  6154  smores  6350  smores2  6352  tfrlem5  6372  pmresg  6735  unfiin  6987  infidc  7000  sbthlem7  7029  peano5nnnn  7959  peano5nni  8993  rexanuz  11153  nninfdclemcl  12665  nninfdclemp1  12667  fvsetsid  12712  tgvalex  12934  tgval2  14287  eltg3  14293  tgcl  14300  tgdom  14308  tgidm  14310  epttop  14326  ntropn  14353  ntrin  14360  cnptopresti  14474  cnptoprest  14475  txcnmpt  14509  xmetres  14618  metres  14619  blin2  14668  metrest  14742  tgioo  14790  limcresi  14902  2sqlem8  15364  bj-charfun  15453  bj-charfundc  15454  bj-charfundcALT  15455
  Copyright terms: Public domain W3C validator