| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > funin | GIF version | ||
| Description: The intersection with a function is a function. Exercise 14(a) of [Enderton] p. 53. (Contributed by NM, 19-Mar-2004.) (Proof shortened by Andrew Salmon, 17-Sep-2011.) |
| Ref | Expression |
|---|---|
| funin | ⊢ (Fun 𝐹 → Fun (𝐹 ∩ 𝐺)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inss1 3424 | . 2 ⊢ (𝐹 ∩ 𝐺) ⊆ 𝐹 | |
| 2 | funss 5336 | . 2 ⊢ ((𝐹 ∩ 𝐺) ⊆ 𝐹 → (Fun 𝐹 → Fun (𝐹 ∩ 𝐺))) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (Fun 𝐹 → Fun (𝐹 ∩ 𝐺)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∩ cin 3196 ⊆ wss 3197 Fun wfun 5311 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-in 3203 df-ss 3210 df-br 4083 df-opab 4145 df-rel 4725 df-cnv 4726 df-co 4727 df-fun 5319 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |