ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fv2 Unicode version

Theorem fv2 5594
Description: Alternate definition of function value. Definition 10.11 of [Quine] p. 68. (Contributed by NM, 30-Apr-2004.) (Proof shortened by Andrew Salmon, 17-Sep-2011.) (Revised by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
fv2  |-  ( F `
 A )  = 
U. { x  | 
A. y ( A F y  <->  y  =  x ) }
Distinct variable groups:    x, y, A   
x, F, y

Proof of Theorem fv2
StepHypRef Expression
1 df-fv 5298 . 2  |-  ( F `
 A )  =  ( iota y A F y )
2 dfiota2 5252 . 2  |-  ( iota y A F y )  =  U. {
x  |  A. y
( A F y  <-> 
y  =  x ) }
31, 2eqtri 2228 1  |-  ( F `
 A )  = 
U. { x  | 
A. y ( A F y  <->  y  =  x ) }
Colors of variables: wff set class
Syntax hints:    <-> wb 105   A.wal 1371    = wceq 1373   {cab 2193   U.cuni 3864   class class class wbr 4059   iotacio 5249   ` cfv 5290
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-rex 2492  df-sn 3649  df-uni 3865  df-iota 5251  df-fv 5298
This theorem is referenced by:  elfv  5597
  Copyright terms: Public domain W3C validator