ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fv2 Unicode version

Theorem fv2 5481
Description: Alternate definition of function value. Definition 10.11 of [Quine] p. 68. (Contributed by NM, 30-Apr-2004.) (Proof shortened by Andrew Salmon, 17-Sep-2011.) (Revised by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
fv2  |-  ( F `
 A )  = 
U. { x  | 
A. y ( A F y  <->  y  =  x ) }
Distinct variable groups:    x, y, A   
x, F, y

Proof of Theorem fv2
StepHypRef Expression
1 df-fv 5196 . 2  |-  ( F `
 A )  =  ( iota y A F y )
2 dfiota2 5154 . 2  |-  ( iota y A F y )  =  U. {
x  |  A. y
( A F y  <-> 
y  =  x ) }
31, 2eqtri 2186 1  |-  ( F `
 A )  = 
U. { x  | 
A. y ( A F y  <->  y  =  x ) }
Colors of variables: wff set class
Syntax hints:    <-> wb 104   A.wal 1341    = wceq 1343   {cab 2151   U.cuni 3789   class class class wbr 3982   iotacio 5151   ` cfv 5188
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-rex 2450  df-sn 3582  df-uni 3790  df-iota 5153  df-fv 5196
This theorem is referenced by:  elfv  5484
  Copyright terms: Public domain W3C validator