ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dffv3g Unicode version

Theorem dffv3g 5557
Description: A definition of function value in terms of iota. (Contributed by Jim Kingdon, 29-Dec-2018.)
Assertion
Ref Expression
dffv3g  |-  ( A  e.  V  ->  ( F `  A )  =  ( iota x x  e.  ( F " { A } ) ) )
Distinct variable groups:    x, F    x, A    x, V

Proof of Theorem dffv3g
StepHypRef Expression
1 df-fv 5267 . 2  |-  ( F `
 A )  =  ( iota x A F x )
2 vex 2766 . . . 4  |-  x  e. 
_V
3 elimasng 5038 . . . . 5  |-  ( ( A  e.  V  /\  x  e.  _V )  ->  ( x  e.  ( F " { A } )  <->  <. A ,  x >.  e.  F ) )
4 df-br 4035 . . . . 5  |-  ( A F x  <->  <. A ,  x >.  e.  F )
53, 4bitr4di 198 . . . 4  |-  ( ( A  e.  V  /\  x  e.  _V )  ->  ( x  e.  ( F " { A } )  <->  A F x ) )
62, 5mpan2 425 . . 3  |-  ( A  e.  V  ->  (
x  e.  ( F
" { A }
)  <->  A F x ) )
76iotabidv 5242 . 2  |-  ( A  e.  V  ->  ( iota x x  e.  ( F " { A } ) )  =  ( iota x A F x ) )
81, 7eqtr4id 2248 1  |-  ( A  e.  V  ->  ( F `  A )  =  ( iota x x  e.  ( F " { A } ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2167   _Vcvv 2763   {csn 3623   <.cop 3626   class class class wbr 4034   "cima 4667   iotacio 5218   ` cfv 5259
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-sbc 2990  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-opab 4096  df-xp 4670  df-cnv 4672  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fv 5267
This theorem is referenced by:  dffv4g  5558  fvco2  5633  shftval  11007
  Copyright terms: Public domain W3C validator