ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dffv3g Unicode version

Theorem dffv3g 5551
Description: A definition of function value in terms of iota. (Contributed by Jim Kingdon, 29-Dec-2018.)
Assertion
Ref Expression
dffv3g  |-  ( A  e.  V  ->  ( F `  A )  =  ( iota x x  e.  ( F " { A } ) ) )
Distinct variable groups:    x, F    x, A    x, V

Proof of Theorem dffv3g
StepHypRef Expression
1 df-fv 5263 . 2  |-  ( F `
 A )  =  ( iota x A F x )
2 vex 2763 . . . 4  |-  x  e. 
_V
3 elimasng 5034 . . . . 5  |-  ( ( A  e.  V  /\  x  e.  _V )  ->  ( x  e.  ( F " { A } )  <->  <. A ,  x >.  e.  F ) )
4 df-br 4031 . . . . 5  |-  ( A F x  <->  <. A ,  x >.  e.  F )
53, 4bitr4di 198 . . . 4  |-  ( ( A  e.  V  /\  x  e.  _V )  ->  ( x  e.  ( F " { A } )  <->  A F x ) )
62, 5mpan2 425 . . 3  |-  ( A  e.  V  ->  (
x  e.  ( F
" { A }
)  <->  A F x ) )
76iotabidv 5238 . 2  |-  ( A  e.  V  ->  ( iota x x  e.  ( F " { A } ) )  =  ( iota x A F x ) )
81, 7eqtr4id 2245 1  |-  ( A  e.  V  ->  ( F `  A )  =  ( iota x x  e.  ( F " { A } ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2164   _Vcvv 2760   {csn 3619   <.cop 3622   class class class wbr 4030   "cima 4663   iotacio 5214   ` cfv 5255
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-sbc 2987  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-br 4031  df-opab 4092  df-xp 4666  df-cnv 4668  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fv 5263
This theorem is referenced by:  dffv4g  5552  fvco2  5627  shftval  10972
  Copyright terms: Public domain W3C validator