ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dffv3g Unicode version

Theorem dffv3g 5623
Description: A definition of function value in terms of iota. (Contributed by Jim Kingdon, 29-Dec-2018.)
Assertion
Ref Expression
dffv3g  |-  ( A  e.  V  ->  ( F `  A )  =  ( iota x x  e.  ( F " { A } ) ) )
Distinct variable groups:    x, F    x, A    x, V

Proof of Theorem dffv3g
StepHypRef Expression
1 df-fv 5326 . 2  |-  ( F `
 A )  =  ( iota x A F x )
2 vex 2802 . . . 4  |-  x  e. 
_V
3 elimasng 5096 . . . . 5  |-  ( ( A  e.  V  /\  x  e.  _V )  ->  ( x  e.  ( F " { A } )  <->  <. A ,  x >.  e.  F ) )
4 df-br 4084 . . . . 5  |-  ( A F x  <->  <. A ,  x >.  e.  F )
53, 4bitr4di 198 . . . 4  |-  ( ( A  e.  V  /\  x  e.  _V )  ->  ( x  e.  ( F " { A } )  <->  A F x ) )
62, 5mpan2 425 . . 3  |-  ( A  e.  V  ->  (
x  e.  ( F
" { A }
)  <->  A F x ) )
76iotabidv 5301 . 2  |-  ( A  e.  V  ->  ( iota x x  e.  ( F " { A } ) )  =  ( iota x A F x ) )
81, 7eqtr4id 2281 1  |-  ( A  e.  V  ->  ( F `  A )  =  ( iota x x  e.  ( F " { A } ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1395    e. wcel 2200   _Vcvv 2799   {csn 3666   <.cop 3669   class class class wbr 4083   "cima 4722   iotacio 5276   ` cfv 5318
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-xp 4725  df-cnv 4727  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fv 5326
This theorem is referenced by:  dffv4g  5624  fvco2  5703  shftval  11336
  Copyright terms: Public domain W3C validator