![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fv2 | GIF version |
Description: Alternate definition of function value. Definition 10.11 of [Quine] p. 68. (Contributed by NM, 30-Apr-2004.) (Proof shortened by Andrew Salmon, 17-Sep-2011.) (Revised by Mario Carneiro, 31-Aug-2015.) |
Ref | Expression |
---|---|
fv2 | ⊢ (𝐹‘𝐴) = ∪ {𝑥 ∣ ∀𝑦(𝐴𝐹𝑦 ↔ 𝑦 = 𝑥)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-fv 5226 | . 2 ⊢ (𝐹‘𝐴) = (℩𝑦𝐴𝐹𝑦) | |
2 | dfiota2 5181 | . 2 ⊢ (℩𝑦𝐴𝐹𝑦) = ∪ {𝑥 ∣ ∀𝑦(𝐴𝐹𝑦 ↔ 𝑦 = 𝑥)} | |
3 | 1, 2 | eqtri 2198 | 1 ⊢ (𝐹‘𝐴) = ∪ {𝑥 ∣ ∀𝑦(𝐴𝐹𝑦 ↔ 𝑦 = 𝑥)} |
Colors of variables: wff set class |
Syntax hints: ↔ wb 105 ∀wal 1351 = wceq 1353 {cab 2163 ∪ cuni 3811 class class class wbr 4005 ℩cio 5178 ‘cfv 5218 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-rex 2461 df-sn 3600 df-uni 3812 df-iota 5180 df-fv 5226 |
This theorem is referenced by: elfv 5515 |
Copyright terms: Public domain | W3C validator |